首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T Tuomikoski  M A Felix  M Dorée  J Gruenberg 《Nature》1989,342(6252):942-945
Membrane transport between the endoplasmic reticulum and the plasma membrane, which involves the budding and fusion of carrier vesicles, is inhibited during mitosis in animal cells. At the same time, the Golgi complex and the nuclear envelope, as well as the endoplasmic reticulum in some cell types, become fragmented. Fragmentation of the Golgi is believed to facilitate its equal partitioning between daughter cells. In fact, it has been postulated that both the inhibition of membrane traffic and Golgi fragmentation during mitosis are due to an inhibition of vesicle fusion, while vesicle budding continues. Although less is known about the endocytic pathway, internalization and receptor recycling are also arrested during mitosis. We have now used a cell-free assay to show that the fusion of endocytic vesicles from baby hamster kidney cells is reduced in Xenopus mitotic cytosol when compared with interphase cytosol. We reconstituted this inhibition in interphase cytosol by adding a preparation enriched in the starfish homologue of the cdc2 protein kinase. Inhibition was greater than or equal to 90% when the added cdc2 activity was in the range estimated for that in mitotic Xenopus eggs, which indicates that during mitosis the cdc2 kinase mediates an inhibition of endocytic vesicle fusion, and possibly other fusion events in membrane traffic.  相似文献   

3.
A De Benedetti  C Baglioni 《Nature》1984,311(5981):79-81
The initiation of protein synthesis can be regulated in mammalian cells by protein kinases which phosphorylate the alpha subunit of initiation factor eIF-2. This phosphorylation results in a block in the recycling of eIF-2 and in the inhibition of messenger RNA binding to 80S initiation complexes. After eIF-2 alpha is phosphorylated, the mRNA becomes associated with 48S complexes consisting of a 40S ribosomal subunit, eIF-2 (alpha P), GDP and Met-tRNAf. One of the eIF-2 alpha kinases is activated by low concentrations of double-stranded RNA (dsRNA). This kinase (PKds) is present at a basal level in all mammalian cells investigated and its synthesis is induced in cells treated with interferon. The PKds may be involved in the inhibition of translation of viral mRNA in interferon-treated cells infected with RNA viruses, as it is activated by viral replicative complexes. It is not known, however, if the activated PKds preferentially inhibits the translation of viral mRNA when cellular protein synthesis proceeds at a normal rate in infected cells. We now report that mRNA covalently linked to dsRNA is preferentially inhibited from binding to 80S complexes by a localized activation of PKds. This suggests that in interferon-treated cells the binding of some nascent viral mRNAs to functional initiation complexes may be preferentially inhibited by a similar mechanism.  相似文献   

4.
R A Hipskind  V N Rao  C G Mueller  E S Reddy  A Nordheim 《Nature》1991,354(6354):531-534
A key event in the response of cells to proliferative signals is the rapid, transient induction of the c-fos proto-oncogene, which is mediated through the serum response element (SRE) in the fos promoter. Genomic footprinting and transfection experiments suggest that this activation occurs through a ternary complex that includes the serum response factor (SRF) and the ternary complex factor p62. Interaction of p62TCF with the SRF-SRE binary complex requires a CAGGA tract immediately upstream of the SRE. Proteins of the ets proto-oncogene family bind to similar sequences and we have found that a member of this family, Elk-1, forms SRF-dependent ternary complexes with the SRE. Elk-1 and p62TCF have the same DNA sequence requirements and antibodies against Elk-1 block the binding of both proteins. Furthermore, we show that like p62TCF, Elk-1 forms complexes with the yeast SRF-homologue MCM1 but not with yeast ARG80. But ARG80 mutants that convey interaction with p62TCF can also form complexes with Elk-1. The similarity, or even identity, between Elk-1 and p62TCF suggests a novel regulatory role for Ets proteins that is effected through interaction with other proteins, such as SRF. Furthermore, the possible involvement of an Ets protein in the control of c-fos has interesting implications for proto-oncogene cooperation in cellular growth control.  相似文献   

5.
Endophilin I is a presynaptic protein of unknown function that binds to dynamin, a GTPase that is implicated in endocytosis and recycling of synaptic vesicles. Here we show that endophilin I is essential for the formation of synaptic-like microvesicles (SLMVs) from the plasma membrane. Endophilin I exhibits lysophosphatidic acid acyl transferase (LPAAT) activity, and endophilin-I-mediated SLMV formation requires the transfer of the unsaturated fatty acid arachidonate to lysophosphatidic acid, converting it to phosphatidic acid. A deletion mutant lacking the SH3 domain through which endophilin I interacts with dynamin still exhibits LPAAT activity but no longer mediates SLMV formation. These results indicate that endophilin I may induce negative membrane curvature by converting an inverted-cone-shaped lipid to a cone-shaped lipid in the cytoplasmic leaflet of the bilayer. We propose that, through this action, endophilin I works with dynamin to mediate synaptic vesicle invagination from the plasma membrane and fission.  相似文献   

6.
Protein kinase catalyzes the transfer of the γ-phosphoryl group from ATP to the hydroxyl groups o fprotein side chains, which plays critical roles in signal transduction pathways by transmitting extracellular signals across the plasma membrane and nuclear membrane to the destination sites in the cytoplasm and the nucleus. Protein kinase C (PKC) is a superfamily of phospholipid-dependent Ser/Thr kinase. There are at least 12 isozymes in PKC family.They are distributed in different tissues and play different roles in physiological processes. On account of their concern with a variety of pathophysiologic states, such as cancer,inflammatory conditions, autoimmune disorder, and cardiac diseases, the inhibitors, which can inhibit the activity of PKC and the interaction of cytokine with receptor, and interfere signal transduction pathway, may be candidates of therapeutic drugs. Therefore, intense efforts have been made to develop specific protein kinase inhibitors as biological tools and therapeutic agents. This article reviews the recent development of some of PKC inhibitors based on their interaction with different conserved domains and different inhibition mechanisms.  相似文献   

7.
AMP-activated protein kinase (AMPK) regulates cellular metabolism in response to the availability of energy and is therefore a target for type II diabetes treatment. It senses changes in the ratio of AMP/ATP by binding both species in a competitive manner. Thus, increases in the concentration of AMP activate AMPK resulting in the phosphorylation and differential regulation of a series of downstream targets that control anabolic and catabolic pathways. We report here the crystal structure of the regulatory fragment of mammalian AMPK in complexes with AMP and ATP. The phosphate groups of AMP/ATP lie in a groove on the surface of the gamma domain, which is lined with basic residues, many of which are associated with disease-causing mutations. Structural and solution studies reveal that two sites on the gamma domain bind either AMP or Mg.ATP, whereas a third site contains a tightly bound AMP that does not exchange. Our binding studies indicate that under physiological conditions AMPK mainly exists in its inactive form in complex with Mg.ATP, which is much more abundant than AMP. Our modelling studies suggest how changes in the concentration of AMP ([AMP]) enhance AMPK activity levels. The structure also suggests a mechanism for propagating AMP/ATP signalling whereby a phosphorylated residue from the alpha and/or beta subunits binds to the gamma subunit in the presence of AMP but not when ATP is bound.  相似文献   

8.
A vertebrate neurotoxin, alpha-latrotoxin, from black widow spider venom causes synaptic vesicle exocytosis and neurotransmitter release from presynaptic nerve terminals. Although the mechanism of action of alpha-latrotoxin is not known, it does require binding of alpha-latrotoxin to a high-affinity receptor on the presynaptic plasma membrane. The alpha-latrotoxin receptor seems to be exclusively at the presynaptic plasmamembrane. Here we report that the alpha-latrotoxin receptor specifically binds to a synaptic vesicle protein, synaptotagmin, and modulates its phosphorylation. Synaptotagmin is a synaptic vesicle-specific membrane protein that binds negatively charged phospholipids and contains two copies of a putative Ca(2+)-binding domain from protein kinase C (the C2-domain), suggesting a regulatory role in synaptic vesicle fusion. Our findings suggest that a physiological role of the alpha-latrotoxin receptor may be the docking of synaptic vesicles at the active zone. The direct interaction of the alpha-latrotoxin receptor with a synaptic vesicle protein also suggests a mechanism of action for this toxin in causing neurotransmitter release.  相似文献   

9.
Growth inhibition by protein kinase C late in mitogenesis   总被引:1,自引:0,他引:1  
C L Huang  H E Ives 《Nature》1987,329(6142):849-850
The importance of alpha-thrombin in the clotting cascade is well-known, but it is also a potent mitogen. Like many other mitogens, thrombin causes receptor-mediated activation of a phosphatidylinositol-specific phospholipase C (PLC), leading to the release of diacylglycerol and the subsequent activation of protein kinase C (refs 3-6). Protein kinase C is probably important in cell proliferation, as activation of this enzyme by phorbol esters promotes growth in many systems. Some growth factors have tyrosine kinase activity and function without activation of PLC or protein kinase C. In this report we show that alpha-thrombin retains its mitogenicity in vascular smooth muscle cells depleted of protein kinase C. Phorbol-12-myristate-13-acetate (PMA) is found to be a potent growth inhibitor when added to vascular smooth muscle cells with alpha-thrombin. Moreover, growth inhibition is maximal when protein kinase C is activated 4 hours after exposure to thrombin, long after the completion of 'early events' induced by thrombin. Thus, PMA probes an event late in the G1 phase of the cell cycle or at the G1-S transition.  相似文献   

10.
Induction of vanilloid receptor channel activity by protein kinase C   总被引:47,自引:0,他引:47  
Premkumar LS  Ahern GP 《Nature》2000,408(6815):985-990
Capsaicin or vanilloid receptors (VRs) participate in the sensation of thermal and inflammatory pain. The cloned (VR1) and native VRs are non-selective cation channels directly activated by harmful heat, extracellular protons and vanilloid compounds. However, considerable attention has been focused on identifying other signalling pathways in VR activation; it is known that VR1 is also expressed in non-sensory tissue and may mediate inflammatory rather than acute thermal pain. Here we show that activation of protein kinase C (PKC) induces VR1 channel activity at room temperature in the absence of any other agonist. We also observed this effect in native VRs from sensory neurons, and phorbol esters induced a vanilloid-sensitive Ca2+ rise in these cells. Moreover, the pro-inflammatory peptide, bradykinin, and the putative endogenous ligand, anandamide, respectively induced and enhanced VR activity, in a PKC-dependent manner. These results suggest that PKC may link a range of stimuli to the activation of VRs.  相似文献   

11.
Stimulus-dependent myristoylation of a major substrate for protein kinase C   总被引:27,自引:0,他引:27  
A A Aderem  K A Albert  M M Keum  J K Wang  P Greengard  Z A Cohn 《Nature》1988,332(6162):362-364
Bacterial lipopolysaccharide (LPS), the major surface component of gram-negative bacteria, exerts a profound effect on the immune system by enhancing the release of proteins and arachidonic acid metabolites from macrophages (for review see ref. 1). The molecular mechanism(s) by which LPS induces these various secretory responses is unknown. We previously reported that LPS promotes the myristoylation of several macrophage proteins including one with a relative molecular mass (Mr) of 68K2. We have now found that by several criteria the 68K myristoylated protein is similar or identical to the 80/87K protein, a major specific substrate for protein kinase C (PKC) found in brain and fibroblasts (for review see refs 7,8). We have also found that the myristoylated PKC substrate is quantitatively associated with the membrane fraction. Myristoylation of the PKC substrate may target it to the membrane and constitute a transduction pathway for stimulus-response coupling.  相似文献   

12.
13.
The phorbol esters in addition to being among the most potent mouse skin tumour promoters profoundly affect many different biological systems. It is postulated that they act through activation of protein kinase C, but substantial heterogeneity in their pharmacological and binding behaviour in some systems has caused concern about whether this is their only target. Evidence linking protein kinase C activation with biological responses to the phorbol esters includes similarity in structure-activity relations for binding and response; in vitro phosphorylation of specific proteins by protein kinase C at the same sites at which phorbol ester treatment induces phosphorylation in intact cells; and correlation in certain cell types between down regulation of protein kinase C on chronic phorbol ester treatment and loss of cellular responsiveness to the phorbol ester. Here we report that microinjection of purified protein kinase C into Swiss 3T3 fibroblasts pretreated with the phorbol ester phorbol 12,13-dibutyrate (PDBu) restores the mitogenic response of the cells to PDBu, directly establishing the involvement of protein kinase C in this response.  相似文献   

14.
Sakaba T  Neher E 《Nature》2003,424(6950):775-778
Second messenger cascades involving G proteins and calcium are known to modulate neurotransmitter release. A prominent effect of such a cascade is the downmodulation of presynaptic calcium influx, which markedly reduces evoked neurotransmitter release. Here we show that G-protein-mediated signalling, such as through GABA (gamma-amino butyric acid) subtype B (GABA(B)) receptors, retards the recruitment of synaptic vesicles during sustained activity and after short-term depression. This retardation occurs through a lowering of cyclic AMP, which blocks the stimulatory effect of increased calcium concentration on vesicle recruitment. In this signalling pathway, cAMP (functioning through the cAMP-dependent guanine nucleotide exchange factor) and calcium/calmodulin cooperate to enhance vesicle priming. The differential modulation of the two forms of synaptic plasticity, presynaptic inhibition and calcium-dependent recovery from synaptic depression, is expected to have interesting consequences for the dynamic behaviour of neural networks.  相似文献   

15.
In the present study, actions of phenothiazines(PTZ) in reversing multidrug resistance(MDR) and inhibiting PKC activity were investigated. It was found that the three PTZs caused 2.49, 36.58 and 75.78 fold reversal of K562/AO2 MDR cells resistant to adriamycin, respectively, while the chemosensitizer verapamil caused 40 fold reversal in the same condition, indicating that PTZ11 is a novel reversal agent of MDR and a potential chemotherapeutic reagent for tumor therapy. PKC activity analysis in the presence of PTZs showd that PTZ6 and PTZ11 inhibited rat brain protein kinase C activity in a manner of dose_dependent. The IC 50 values were (489.77±31.4) and (113±9.64) μmol/L, respectively. PTZ7 had no inhibition on PKC activity. Further study showed that PTZ11 could reduce PMA_mediated activation of PKC in a manner of dose_dependent, suggesting that PTZ11 might compete for the high_affinity phorbol ester binding site within PKC molecule. Recently, an X_ray structure of PMA in complex with PKC Cys2 activator_binding domain was solved. We therefore decided to explore the possible binding model of PTZ11 with PKC molecule using SYBYL 6.02 program. It was shown that the binding site of PTZ11 with PKC molecule partially overlapped with that of PMA, providing for the first time new data for designing PKC inhibitors and MDR reversal drugs.  相似文献   

16.
L A Witters  C A Vater  G E Lienhard 《Nature》1985,315(6022):777-778
The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) is present in many mammalian tissues, and its important physiological protein substrates are only now beginning to be identified. A useful advance in identifying these intracellular substrates has been the recognition that the kinase is the receptor for phorbol esters, which stimulate phosphotransferase activity. Phorbol ester-induced changes in protein phosphorylation in intact cells may thus be taken, in part, as a probable indication of protein kinase C activation. The many cellular effects of phorbol esters include the stimulation of glucose uptake, although the response of glucose uptake to phorbol esters appears to be complex, apparently varying in response time and requirement for protein synthesis. Such observations prompted us to explore one possible explanation for the alteration of glucose uptake, namely, phosphorylation of the glucose transporter by protein kinase C. We report here that incubation of purified human erythrocyte glucose transporter with rat brain protein kinase C results in the phosphorylation of a protein of relative molecular mass (Mr) 50,000-60,000 which has subsequently been identified as the glucose transporter by specific immunoprecipitation with a monoclonal antibody. Immunoprecipitation of membrane proteins from 32P-labelled human erythrocytes revealed a phorbol ester-stimulated phosphorylation of the transporter. This covalent modification of the glucose transporter may thus, in part, underlie the ability of phorbol esters and certain hormones to stimulate glucose uptake.  相似文献   

17.
18.
19.
J H Hartwig  M Thelen  A Rosen  P A Janmey  A C Nairn  A Aderem 《Nature》1992,356(6370):618-622
AGONISTS that stimulate protein kinase C (PKC) induce profound changes in cell morphology correlating with the reorganization of submembranous actin, but no direct connection between PKC and actin assembly has been identified. The myristoylated, alanine-rich C kinase substrate (MARCKS) binds calmodulin and is a predominant, specific substrate of PKC which is phosphorylated during macrophage and neutrophil activation , growth factor-dependent mitogenesis and neurosecretion; it is redistributed from plasma membrane to cytoplasm when phosphorylated and is involved in leukocyte motility. Here we report that MARCKS is a filamentous (F) actin crosslinking protein, with activity that is inhibited by PKC-mediated phosphorylation and by binding to calcium-calmodulin. MARCKS may be a regulated crossbridge between actin and the plasma membrane, and modulation of the actin crosslinking activity of the MARCKS protein by calmodulin and phosphorylation represents a potential convergence of the calcium-calmodulin and PKC signal transduction pathways in the regulation of the actin cytoskeleton.  相似文献   

20.
J S Larson  T J Schuetz  R E Kingston 《Nature》1988,335(6188):372-375
The human heat-shock factor (HSF) regulates heat-shock genes in response to elevated temperature. When human cells are heated to 43 degrees C, HSF is modified post-translationally from a form that does not bind DNA to a form that binds to a specific sequence (the heat-shock element, HSE) found upstream of heat-shock genes. To investigate the transduction of the heat signal to HSF, and more generally, how mammalian cells respond at the molecular level to environmental stimuli, we have developed a cell-free system that exhibits heat-induced activation of human HSF in vitro. Comparison of HSF activation in vitro and in intact cells suggests that the response of human cells to heat shock involves at least two steps. First, an ATP-independent, heat-induced alteration of HSF allows it to bind the HSE; the temperature at which activation occurs in vitro implies that a human factor directly senses temperature. Second, HSF is phosphorylated. It is possible that similar multi-step activation mechanisms play a role in the response of eukaryotic cells to a variety of environmental stimuli, and that these mechanisms evolved to increase the range and flexibility of the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号