共查询到20条相似文献,搜索用时 15 毫秒
1.
V(Fm↓ΔKn)={ω}∪{ui|i=1,2…,m}∪{uij|i=1,2,…,mij=2,3,…n},E(Fm↓ΔKn)=(ωui)==1,2,…,m}∪{uivij|i=1,2,…,n}∪{uiui 1|i=1,2,…,m-1}∪{vijvik|i=1,2,…,m;j=2,3,…,n-1;k=j 1,j 2,…,n},对图G的一个正常的矗边染色法f,若↓Ae∈E(G),e=uv,{f(u w) uω∈E(G)}≠{v w)|vω∈E(G),则称,为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.从而得到了Fm↓ΔKn的边色数和邻强边色数。 相似文献
2.
V(Fm Fn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm Fn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m,j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvij+1|i=1,2,…,m;j=1,2,…,n-1}对图G的一个正常的k边染法f,若 e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(uw)|uw∈E(G)}则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数。本文得到了Fm Fn的边色数和邻强边色数。 相似文献
3.
给出了FmWn的定义,研究了FmWn边染色和邻强边染色,得出了FmWn的边色数和邻强边色数. 相似文献
4.
对图G的一个正常的k边染色法f,若 e∈E(G),e = uv,{f(uw) | uw∈E(G)}≠{f(vw) | vw∈E(G)},则称f为G 的一个k 邻强边染色法,k的最小值称为G 的邻强边色数.V(Fm Sn) = {w}∪{ui | i =1,2,…,m}∪{vij | i =1,2,…,m;j =1,2,…,n},E(Fm Sn) = {wui | i =1,2,…,m}∪{uivij | i =1,2,…,m;j =1,2,…,n}∪{uiui+1 | i =1,2,…,m-1}. 本文得到了Fm Sn 的边色数和邻强边色数. 相似文献
5.
图Fm(△)Fn的边色数和邻强边色数 总被引:1,自引:0,他引:1
V(Fm(△)Fn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm(△)Fn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m,j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}∪{vijvij+1|i=1,2,…,m;j=1,2,…,n-1}对图G的一个正常的k边染法f,若e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(uw)|uw∈E(G)}则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.本文得到了Fm(△)Fn的边色数和邻强边色数. 相似文献
6.
对图G的一个正常的k边染色法f,若A↓e∈E(G),e=uv,{f(uw)|uw∈E(G))≠{f(vw)|vw∈E(G)),则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.V(Fm△↓Sn)={w}∪{ui|i=1、2,…,m}∪{vv|i=1,2,…,m;j=1,2,…,n),E(Fm△↓Sn)={wui|i=1,2,….m}∪{uivu|i=1,2,…,m;j=1,2,…,n}∪{uiui |i=1,2,…,m-1).本文得到了Fm△↓Sn的边色数和邻强边色数. 相似文献
7.
8.
给出了Fm△↓Wn的定义。研究了Fm△↓Wn边染色和邻强边染色。得出了Fm△↓Wn的边色数和邻强边色数. 相似文献
9.
对图G的一个正常的k边染色法f,若(≯)e∈E(G),e=uv,{f(uw)|uw∈E(G)}≠{f(vw)|vw∈E(G)},则称f为G的一个k-邻强边染色法,k的最小值称为G的邻强边色数.V(Fm(△)Sn)={w}∪{ui|i=1,2,…,m}∪{vij|i=1,2,…,m;j=1,2,…,n},E(Fm(△)Sn)={wui|i=1,2,…,m}∪{uivij|i=1,2,…,m;j=1,2,…,n}∪{uiui+1|i=1,2,…,m-1}.本文得到了Fm(△)Sn的边色数和邻强边色数. 相似文献
10.
将顶点集和边集分别为V={v_(ij)┃i=1,2,…,m;j=0,1,…,n-1},E={v_(10)v_(20),v_(20)v(30),…,v_(m0)v_(10)}U(Uim-1)(ij)ik┃j≠k,j,k=0,1,…,n-1}的图简记为Cm·Kn.利用图分解和色集置换的方法,给出了图Cm·Kn的邻强边色数。 相似文献
11.
马刚 《苏州科技学院学报(自然科学版)》2008,25(2):11-14
对一个正常边染色满足相邻点的色集不同,称为邻强边染色,其所用最少染色数称为邻强边色数。就星Sm与扇Fn的联图Sm∨Fn,得到了在m,n不同取值情况下的邻强边色数。 相似文献
12.
几类冠图的邻强边色数 总被引:7,自引:0,他引:7
图的强染色来自计算机科学,有着很强的实际背景,但确定图的强色数是非常困难的。张忠辅,刘林忠,王建方等研究了图的邻强边染色,并提出了邻强边染色猜想:对任意连通图GG,{y}≥3且G≠C5有△≤X’ax(G)≤△+2。研究了树、圈、扇、轮、完全二部图及完全图的冠图的邻强边色数;证明了:△≤X’as(G)≤△+1,且X’as(G)≤△+1当且仅当G[V△]≠Ф。 相似文献
13.
得到了Wm∨Wn的邻点可区别边色数,其中Wm与Wn分别表示m+1阶和n+1阶的轮,Wm∨Wn表示Wm和Wn的联图. 相似文献
14.
图G的一个正常边染色称作邻强边染色,若任意相邻两个的点的染色集合不相同,给图G进行邻强边染色所需的最少颜色数,称为图G的邻强边色数,此文讨论了轮的倍图的邻强边色数.即若Wn为n 1阶轮,则χαs′(D(Wn))=2n(n≥4). 相似文献
15.
将顶点集和边集分别为V={vij┃i=1,2,…,m;j=0,1,…,n-1},E={v10v20,v20v30,…,vm0v10}U(Ui-1^m)ijvik┃j≠k,j,k=0,1,…,n-1}的图简记为Cm·Kn.利用图分解和色集置换的方法,给出了图Cm·Kn的邻强边色数。 相似文献
16.
对一个正常的边染色满足相邻点的色集不同的条件时,称为邻强边染色,其所用最少染色数称为邻强边色数。就路与轮的联图,得到了在m,n任意取值情况下的邻强边色数。 相似文献
17.
得到了Wm ∨ Wn的邻点可区别边色数,其中Wm与Wn分别表示m 1阶和n 1阶的轮,Wn ∨ Wn表示Wm和Wn的联图. 相似文献
18.
路和圈及星的全图的邻强边色数 总被引:1,自引:0,他引:1
为了对图的全染色猜想的研究,提出了全图的概念.对一些特殊图的全图的邻点可区别的边染色作了研究,并且得到了确切的染色数,以及给出了一个邻点可区别的边染色法. 相似文献
19.
马刚 《苏州科技学院学报(自然科学版)》2008,25(2)
对一个正常边染色满足相邻点的色集不同,称为邻强边染色,其所用最少染色数称为邻强边色数.就星Sm与扇Fn的联图SmⅤFn,得到了在m,n不同取值情况下的邻强边色数. 相似文献
20.
袁秀华 《苏州科技学院学报(自然科学版)》2008,25(1):20-23
研究了路和圈的广义Mycielski图的邻强边染色,证明了对P个点的路Pp≥2),Xa(Mn(Pp))={4 p=3.对圈Cp,有Xa(Mn(Cp))=5. 相似文献