首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
The mesoporous nanocrystalline zircoina was synthesized via solid state reaction structure directing method in the presence of Laponite. The introduction of Laponite renders the higher thermal stability and lamellar track to the zireonia. Laponite acts as inhibitor for crystal growth and also hard template for the mesostructure. The role of Laponite is attributed to the interaction between the zireonia precursors and the nano-platelets of Laponite via the bridge of hydrophilic segments of surfactant. It results in the formation of Zr-O-Mg-O-Si frameworks in the direction of Laponite layer with the condensation of frameworks during the calcination process, which contributes the higher stability and lamellar structure to the nano-sized zireonia samples.  相似文献   

2.
The effects of various gel casting process parameters such as the dispersant and solid loading on the rheology of Fe slurries, molding, and sintering behaviors were studied. The relationship between solid loading and viscidity in the process of iron base powder metallurgy was researched to obtain better microstructure and properties. The results showed that the viscosity of Fe slurries is obviously reduced with the increase of the dispersant. The suitable parameters are as follows: the solid loading is 61% and sintering temperature is 1180℃. Iron parts with relatively high density and better properties were obtained by the gel casting process.  相似文献   

3.
To simulate the phenomena in the mold region of continuous casting by coupling fluid flow and solidification, a three-dimensional mathematical model has been developed based on the K-ε turbulence equations and the SIMPLER algorithm. A pseudo source term was introduced into the energy equation to account for the latent heat and kinetic energy. The fluid flow in the mushy zone was calculated by defining the fluid viscosity as a function of the solid fraction in the mushy zone. Fine meshes in the solid region improve convergence and reduce iteration time. Comparison of the fluid flow and temperature distribution with and without solidification shows that although the solid shell in the mold is thin, it still greatly affects the flow pattern. The numerical results obtained provide details of the fluid flow and solidification phenomena which can be used to optimize the nozzle structure and other process parameters in continuous casting.  相似文献   

4.
A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical simulation of the divergent extrusion process including the welding stage for complicated hollow sections was conducted. Based on the analysis of flowing behaviors, the flowing velocities of the alloy in portholes and near the welding planes were properly controlled through optimizing the expansion angle as well as porthole areas and positions. After the die structure optimization, defects such as warp, wrist, and the wavelike are eliminated, which improves the section-forming quality. Meanwhile, the temperature distribution in the cross section is uniform. Especially, the temperature of the C-shape notch with a larger thickness is lower than that of other regions in the cross section, which is beneficial for balancing the alloy flowing velocity.  相似文献   

5.
Fluid flow field synergy principle and its application to drag reduction   总被引:2,自引:1,他引:1  
The concept of field synergy for fluid flow is introduced, which refers to the synergy of the velocity field and the velocity gradient field in an entire flow domain. Analyses show that the flow drag depends not only on the velocity and the velocity gradient fields but also on their synergy. The principle of minimum dissipation of mechanical energy is developed, which may be stated as follows: the worse the synergy between the velocity and velocity gradient fields is, the smaller the resistance becomes. Furthermore, based on the principle of minimum dissipation of mechanical energy together with conservation equations, a field synergy equation with a set of specified constraints has been established for optimizing flow processes. The optimal flow field can be obtained by solving the field synergy equation, which leads to the minimum resistance to fluid flow in the fixed flow domain. Finally, as an example, the field synergy analysis for duct flow with two parallel branches is presented. The optimized velocity distributor nearby the fork, which was designed based on the principle of minimum dissipation of mechanical energy, may reduce the drag of duct flow with two parallel branches.  相似文献   

6.
This essay defines the concepts of ecological flow velocity as well as ecological hydraulic radius (EHR) and proposes an ecological hydraulic radius approach (EHRA) which considers both the watercourse information (including hydraulic radius, roughness coefficient and hydraulic gradient) and the required stream velocity necessary for maintenance of certain ecological functions all together. The key parameter of EHRA is to fix the watercourse cross-sectional flow area corresponding to EHR, by which the relation between parabola shaped cross-sectional flow area and hydraulic radius is deduced. The EHRA not only meets the requirement of flow velocity for adequate fish spawning migration, but also is applicable to the ecological flows in regard with other ecological issues (such as the calculation of the instream flow requirements for transporting sediment and for pollution self-purification, etc.). This essay has illuminated the computational process taking the estimation of ecological water requirement of Zhuba Hydrologyical Station watercourse in Niqu branch of the Yalong River as an example. Additionally, we compare EHRA with Tennant approach. The result shows that the Zhuba Hydrological Station ecological water requirement calculated by EHRA lies between the minimum and favorable ecological water requirement calculated by the Tennant approach. This is due to the fact that the ecological flow velocity (such as the fish spawning migration flow velocity) was taken into consideration, producing results applicable to the practical situation.  相似文献   

7.
With water mist regarded as a promising fireextinguishing agent in spacecraft, it is necessary to investigate characteristics of water mist in microgravity. In this paper, FDS 6.0 is used to measure the centerline velocity of water mist with various initial velocities and the spray distance. The droplets will approach their terminal velocity after leaving the nozzle in normal-gravity, which agrees with the theoretical calculation. The velocity of water mist declines in microgravity. The polynomials of the velocity change are given in microgravity, which makes it possible to obtain the velocity with the spray distance increase when arbitrary initial velocity is given.  相似文献   

8.
The Lonversion of polyacrylonitrile(PAN)fibre to carbon fibre consists of an oxidative stabili-zation process in which the PAN fibre is heated between 200-300℃ in air to give a thermally co-herent structure.The structural changes of PAN fibres during stabilization have been investigatedusing Fourier Transform Infrared Spectroscopy(FTIR)and Differential Scanning Calorimetry(DSC).An attempt has also been made to follow the conversion of the structure using Ramanspectroscopy as a complementary technique.The FTIR spectra of the fibres subjected to variousdegree of heat treatment show a continuous decrease in nitrile absorption and a simultaneous in-crease in intensity of the C=N and/or C=C bands as the stabilization proceeds.A conversion ra-tio(CR)is defined as the intensity of the C=N and/or C=C bands relative to that of the nitrilegroups.The exotherm present in the DSC experiments was observed to weaken progressively dur-ing the stabilization process.It is confirmed that the original PAN structure is dissipating and thenew ladder polymer is being formed.  相似文献   

9.
Thermal barrier coatings are widely used as surface modifications to enhance the surface properties of the material and protect from surface degradations such as erosion and corrosion. Ceramic-based coatings are highly recommended to increase wear resistance in the industrial sector. In this paper, an alumina–titania ceramic powder was deposited on an aluminum alloy using an atmospheric plasma spray technique. Experimental investigations were performed to study the behavior and erosion rate of the material. Solid particle erosion studies were performed by varying the particle velocity and particle flow rate. The angle impingement and stand-off distance were constant for comparison.The base metal has a clinging effect and the mass change was negative at a maximum particle flow rate of 4 g·min~(-1). Under the same process conditions, the coated sample had a reduced lifetime and reached a maximum erosion rate of 0.052(Δg/g). The solid particle erosion studies confirmed that the base metal aluminum alloy had severe surface damage with erodent reinforcement when compared to the coated samples.The influence of the particle velocity, particle flow rate, and input process parameters were also identified.  相似文献   

10.
Thermal barrier coatings are widely used as surface modifications to enhance the surface properties of the material and protect from surface degradations such as erosion and corrosion. Ceramic-based coatings are highly recommended to increase wear resistance in the industrial sector. In this paper, an alumina–titania ceramic powder was deposited on an aluminum alloy using an atmospheric plasma spray technique. Experimental investigations were performed to study the behavior and erosion rate of the material. Solid particle erosion studies were performed by varying the particle velocity and particle flow rate. The angle impingement and stand-off distance were constant for comparison. The base metal has a clinging effect and the mass change was negative at a maximum particle flow rate of 4 g·min?1. Under the same process conditions, the coated sample had a reduced lifetime and reached a maximum erosion rate of 0.052 (Δg/g). The solid particle erosion studies confirmed that the base metal aluminum alloy had severe surface damage with erodent reinforcement when compared to the coated samples. The influence of the particle velocity, particle flow rate, and input process parameters were also identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号