首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 92 毫秒
1.
在保持其他制备条件,如pH、干燥条件、焙烧温度、Pt的浸渍条件以及Al2O3和Pt的含量相同的情况下,通过Al的不同引入方法,即共沉淀法(CP)、成型法(SH)、悬浮法(SU)和混和法(MI),制备了4种Pt-SO2-4/ZrO2-Al2O3(PSZA)催化剂.使用N2吸附和微库仑仪分析了催化剂的组织结构和硫含量.分别使用X射线光散射仪(XRD)、H2程序升温还原(TPR)及NH3程序升温解析(TPD)研究了催化剂的晶相结构、氧化还原性质和表面酸性质.在固定床反应器上考察了反应温度对催化剂正己烷异构化反应的影响和异构化产物分布.成型法催化剂仅探测到四方晶相,表明该种Al的引入方法延缓了四方相转为单斜相;并且成型法催化剂具有一个强的最低的TPR还原峰温度,表明Al的成型引入法增强了硫的还原.催化考评结果表明成型法催化剂具有最高的催化性能.催化剂的物化表征结果表明了催化活性同催化剂的氧化还原性质关联较好,而同硫含量、酸强度及强酸位数量关联性不好.实验结果表明Al的引入方式对于PSZA催化剂在正己烷异构化中具有高催化活性非常关键.  相似文献   

2.
研究了固体超强酸SO2-4/ZrO2催化剂的制备条件(硫酸浸渍浓度、焙烧温度等)对其催化性能的影响.结果表明,催化剂的制备条件不同,对莰烯选择性和α-蒎烯转化率有较大影响.适宜的催化剂制备条件是: 硫酸浓度0.5~1.0 mol/L,焙烧温度650 ℃.对所制备的SO2-4/ZrO2固体超强酸作为α-蒎烯异构反应的催化剂,以及对影响反应过程的主要因素进行探讨.优化的工艺条件为:反应时间1~3 h,反应温度(130±2)℃,催化剂质量分数3%~4%.该条件下α-蒎烯转化率96.4%,莰烯选择性49.7%.此外,还分析了催化剂放置时间对异构产物的影响及催化剂重复使用情况.  相似文献   

3.
采用机械混合法,利用ZrO2和WOx/ZrO2对Pt/HY分子筛进行了改性,考察了改性催化剂Pt/Zr—HY和Pt/WZr—HY上的正庚烷临氢异构化反应性能,探讨了改性催化剂影响催化反应活性和异构化选择性的原因。结果表明,改性后的Pt/HY催化剂,在反应活性下降的同时,异构化选择性显著提高,且异构化产物向裂解产物的转化温度明显提高,其中Pt/WZr—HY催化剂的这一效果尤为显著。但改性并不改变反应历程。同时改性也使:HY的酸量明显减少,酸强度改变,造成转化率减少及异构化选择性增大。  相似文献   

4.
固体超强酸SO4^2-/ZrO2催化α-蒎烯异构反应   总被引:5,自引:0,他引:5  
研究了固体超强酸SO2-4/ZrO2催化剂的制备条件(硫酸浸渍浓度、焙烧温度等)对其催化性能的影响.结果表明,催化剂的制备条件不同,对莰烯选择性和α-蒎烯转化率有较大影响.适宜的催化剂制备条件是 硫酸浓度0.5~1.0 mol/L,焙烧温度650 ℃.对所制备的SO2-4/ZrO2固体超强酸作为α-蒎烯异构反应的催化剂,以及对影响反应过程的主要因素进行探讨.优化的工艺条件为反应时间1~3 h,反应温度(130±2)℃,催化剂质量分数3%~4%.该条件下α-蒎烯转化率96.4%,莰烯选择性49.7%.此外,还分析了催化剂放置时间对异构产物的影响及催化剂重复使用情况.  相似文献   

5.
SO42-/ZrO2-Al2O3-Al固体酸催化合成乙酸己酯   总被引:1,自引:0,他引:1  
采用铝阳极氧化法制备了Al2O3-Al一体型载体,通过浸渍的方法将固体超强酸SO42-/ZrO2引入到Al2O3-Al上,得到一种新型的固体酸催化剂SO42-/ZrO2-Al2O3-Al,用XRD和NH3-TPD等技术对其结构和表面酸性进行了表征,并研究了反应条件等因素对催化合成乙酸己酯催化性能的影响。结果表明,SO42-/ZrO2-Al2O3-Al固体酸对乙酸己酯合成反应具有很好的催化活性和选择性,催化剂不经处理,可循环使用多次,与一些常见的催化剂相比,具有明显的优点。  相似文献   

6.
针对传统SO2-4/ZrO2固体超强酸存在稳定性较差等缺点,通过添加α-Al2O3和偏钨酸铵对其进行改性,制备出复合氧化物固体超强酸SO2-4/ZrO2-WO3-Al2O3(SWZA).为了获得催化性能高的SZWA催化剂,采用流动指示剂法测定改性催化剂的酸度,同时利用XRD,FTIR,TGA-DSC,SEM等多种现代物理方法对SWZA催化剂进行表征,研究了陈化温度、焙烧温度等制备条件以及Al2O3,WO3等不同金属氧化物的引入对产物催化性能的影响.实验结果表明:较低的陈化温度使催化剂表面易形成结晶中心,降低了质点的迁移速率,抑制了晶粒生长,易于生成小且规则的晶粒,使得到的催化剂具有较大的比表面积;在制备催化剂时,500 ℃的焙烧温度有利于ZrO2向四方晶型转化,增大了超强酸的比表面积;Al2O3的引入增加了超强酸的Lewis酸位,提高了催化剂的催化活性;WO3的引入对催化剂晶型具有定向诱导作用,延迟了ZrO2晶化,稳定了亚稳态的四方晶型,缓和了SO2-4高温下分解流失的趋势.  相似文献   

7.
8.
固体超强酸SO2-4/ZrO2形成机理的研究   总被引:6,自引:0,他引:6  
用FT-IR、XRD、SEM等分析手段对固体超强酸SO2-4/ZrO2的形成过程进行了研究,用FT-IR差谱法直接证实了ZrO2-SO2-4间化学键的生成,XRD分析证实焙烧温度对SO2-4/ZrO2超强酸性能影响最大,体系在ZrO2呈四方晶型时超强酸强度最高,SEM分析表明经SO2-4处理后,ZrO2表面形貌发生了显著变化,将该催化剂用于马来酸二丁酯的酯化合成,其催化活性与催化剂表面分析结果一致.  相似文献   

9.
S2O2-8/ZrO2固体超强酸催化剂上的正戊烷反应性能研究   总被引:1,自引:0,他引:1  
考察了焙烧温度、活化温度等因素对S2O 2-8/ZrO2(PSZ)固体超强酸常温下催化正戊烷反应性能的影响,利用色谱-质谱( GC-MS)、傅里叶红外(FT-IR)、原位X-射线粉末衍射(XRD)、比表面测定(BET)、含硫量分析等手段研究了正戊烷反应产物、催化剂晶型变化及表面酸位类型等. 结果表明,焙烧温度和活化温度是影响催化反应活性的关键. 焙烧温度在723~973 K制备的PSZ固体超强酸催化 剂,308 K下对正戊烷均具有催化反应活性,823 K焙烧样品活性最佳;对于最佳焙烧温度样 品,活化温度在373-673 K之间,均具有较高的反应活性,活化温度为523 K时活性最佳. 异构化表观活化能为41.7 Kj/mol. 整个反应大致可以分为3个阶段反应初期,产物均为异 戊烷,表明发生的是异构化反应;反应中期,异构化反应速率减低,产物中出现异丁烷,表 明异构化反应和裂解反应同时发生;反应后期,异构化产物明显减少,异丁烷和己烷异构体 明显增加,表明裂解反应已经取代异构化反应,成为反应的主流. 适宜的焙烧温度使ZrO2 晶化是形成超强酸的必要条件;合适的活化温度影响酸位类型,523 K下活化的样品主要为 强Brnsted酸位,同时有少量的强Lewis酸位存在.  相似文献   

10.
制备不同Nd2O3质量分数的2% Pt/Nd2O3-WO3/ZrO2催化剂.通过N2物理吸附,NH3程序升温脱附(NH3-TPD)、H2程序升温脱附(H2-TPD)、CO脉冲吸附等方法表征催化剂的物理化学性质.用固定床连续流动反应器考察催化剂对甘油氢解制1,3-丙二醇反应的催化性能.结果表明,引入Nd2 O3提高了催化剂的H2吸附量,进而提高了催化剂的催化活性;焙烧温度对催化剂性能有重要影响.在4 MPa、130℃、质量分数为60%甘油水溶液进料、液体体积空速(LHSV)0.25 h-1反应条件下,2% Pt/0.25NdWZ (700,450)催化剂催化甘油氢解反应,甘油转化率为75.2%,1,3-丙二醇产率达28.9%,产物中n(1,3-丙二醇)/n(1,2-丙二醇)达到21.9.  相似文献   

11.
用红外光谱和X射线光电子能谱对浸渍法制得的SO2-4/TiO2和SO2-4/ZrO2催化剂进行了表征,以NH3的TG技术对其酸性进行了研究,并同丁烯与异丁烷的烷基化反应和苯甲酰氯与甲苯的酰化反应的催化活性关联.结果表明,催化活性与酸性有对应关系  相似文献   

12.
制备了SO2-4/ZrO2型磁性固体超强酸.用SEM,XRD,DTA,IR等手段研究了粒子大小、晶型结构、相变温度、酸强度、磁性能及催化合成乙酸乙酯反应.考查了催化剂用量、醇酸比、反应时间等对酯化产率的影响及催化剂的使用寿命,找到了酯化反应的最佳工艺条件.  相似文献   

13.
固体超强酸SO4^2—/ZrO2催化合成乳酸薄荷酯   总被引:2,自引:1,他引:2  
介绍了首次采用SO4^2-/ZrO2催化合成乳酸薄荷酯及反应条件对酯化反应的影响。  相似文献   

14.
固体超强酸SO4^2—/ZrO2形成机理的研究   总被引:9,自引:0,他引:9  
用FT-IR、XRD、SEM等分析手段对固体超强酸SO4^2-/ZrO2的形成过程进行了研究,用FT-IR差谱法直接证实了ZrO2-SO4^2-间化学键的生成,XRD分析证实焙烧温度对SO4^2-/ZrO2超强酸性能影响最大,体系在ZrO2呈四方晶型时超强酸强度最高,SEM分析表明经SO4^2-处理后,ZrO2表面形貌发生了显著变化,将该催化剂用于马来酸二丁酯的酯化合成,其催化活性与催化剂表面分析  相似文献   

15.
对 S O2-4 / Zr O2 超强酸体系作为重油催化裂化助剂进行了研究。结果表明,加入适量的 S O2-4 / Zr O2 可提高轻质油收率,并能降低催化剂生焦;在工业催化裂化高温水蒸汽流化的条件下, S O2-4 / Zr O2 超强酸体系中的 B 酸对重油催化裂化起着至关重要的作用。  相似文献   

16.
本文对采用不同方法制备了两种SO4^2-/ZrO2系列的SO4^2-/ZrO2-TiO2和SO4^2-/ZrO2-Al2O3固体超强酸催化剂,并以顺丁烯二酸酐和正丁醇的酯化反应为探针反应,考察了Zr:A1,Zr:Ti的原于配比,焙烧温度,焙烧时间以及浸渍液硫酸的浓度对催化剂活性的影响。  相似文献   

17.
以2种商品化的TiO2为载体,用浸渍法制备了一系列V2O5负载量不同的V2O5/TiO2催化剂,通过X射线衍射表征了V2O5在载体TiO2表面的分散情况,考察了催化剂对3-甲基吡啶气相氨氧化合成3-氰基吡啶反应的催化性能、结果表明,钒氧物种在TiO2载体表面呈高度分散时V2O5/TiO2催化剂表现出更优的催化性能,其中以Sigma公司生产TiO2为载体制备的5%V2O5/TiO2催化剂的性能最优,对应93%的3-甲基吡啶转化率和90%的3-氰基吡啶选择性;载体中含硫酸盐会降低催化剂催化活性。  相似文献   

18.
制备了稀土改性固体超强酸SO24-/TiO2-La2O3环境友好催化剂,并以丁酸丁酯的合成作为探针反应,系统考察了原料摩尔比n(La3+)∶n(Ti4+)、硫酸浸渍时间、焙烧温度、活化时间等制备条件对SO24-/TiO2-La2O3催化活性的影响.实验表明:制备催化剂的适宜条件是原料摩尔比n(La3+)∶n(Ti4+)=1∶34,浸渍浓度为0.8 mol.L-1,浸渍时间为24 h,焙烧温度为480℃,活化时间3 h.利用优化条件下制备的催化剂SO24-/TiO2-La2O3催化合成缩醛(酮),在醛/酮与二元醇(乙二醇,1,2-丙二醇)的投料摩尔比为1∶1.5,催化剂的用量占反应物总投料质量的0.5%,反应时间为1 h条件下,10种缩醛(酮)的产率为41.4%~95.8%.  相似文献   

19.
柠檬酸三丁酯(TBC)是绿色环保无毒的增塑剂,其传统合成工艺采用浓硫酸作催化剂,设备腐蚀、三废问题严重,开发高效、绿色的替代催化剂是当前研究的重点。本文采用共沉淀-浸渍法向S2O82-/ZrO2-Al2O3催化剂中引入适量的La元素,制备出具有较高催化活性和稳定性的固体超强酸催化剂;以柠檬酸三丁酯的合成为探针反应评价催化剂的活性,并通过红外光谱、X射线衍射、NH3程序升温脱附,吡啶红外光谱等表征方法考察了La的添加对催化剂结构和性能的影响,结果表明:La的加入能够阻止催化剂中过硫酸根的分解,增强S和O之间的相互作用;少量的La不仅能增加催化剂的比表面积、酸强度和酸量,且能提高催化剂的活性和稳定性,当La的加载量为1%时,制得的催化剂活性最高,柠檬酸的转化率达到93.69%。这表明La的引入可提高固体超强酸催化剂的活性和稳定性,所制备的催化剂可用于传统催化剂浓硫酸的替代品,并有效降低设备的损耗,提高产品TBC的品质,优化TBC合成工艺,具有良好的经济价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号