首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98   总被引:63,自引:0,他引:63  
Webster PJ  Moore AM  Loschnigg JP  Leben RR 《Nature》1999,401(6751):356-360
Climate variability in the Indian Ocean region seems to be, in some aspects, independent of forcing by external phenomena such as the El Ni?o/Southern Oscillation. But the extent to which, and how, internal coupled ocean-atmosphere dynamics determine the state of the Indian Ocean system have not been resolved. Here we present a detailed analysis of the strong seasonal anomalies in sea surface temperatures, sea surface heights, precipitation and winds that occurred in the Indian Ocean region in 1997-98, and compare the results with the record of Indian Ocean climate variability over the past 40 years. We conclude that the 1997-98 anomalies--in spite of the coincidence with the strong El Ni?o/Southern Oscillation event--may primarily be an expression of internal dynamics, rather than a direct response to external influences. We propose a mechanism of ocean-atmosphere interaction governing the 1997-98 event that may represent a characteristic internal mode of the Indian Ocean climate system. In the Pacific Ocean, the identification of such a mode has led to successful predictions of El Ni?o; if the proposed Indian Ocean internal mode proves to be robust, there may be a similar potential for predictability of climate in the Indian Ocean region.  相似文献   

2.
为了研究热带印度洋偶极子(IOD)与海平面异常之间的相关性,采用经验正交函数分析方法(EOF)及Hilbert-Huang变换等统计方法,分析热带印度洋的海表面温度(SST)与海平面高度异常(SLA)的相关关系。通过对热带印度洋偶极子指数(DMI)与南方涛动指数(SOI)和SLA的相关性分析,得出IOD与El Nio-Southern Oscillation(ENSO)之间可能存在一定相关关系,此外,IOD与海平面变化有很好的相关性。通过对IOD爆发年的DMI以及海平面变化的分析,证实IOD具有季节锁相的重要特征,并探讨了该季节变化与海平面变化的相关关系。结果表明,IOD事件与海平面的变化这两者之间存在很强的一致性。  相似文献   

3.
Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000?years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000?years ago) and the Younger Dryas (around 12,000?years ago), or when local summer insolation was high in the late Holocene, that is, during the past 4,000?years.  相似文献   

4.
Schefuss E  Schouten S  Schneider RR 《Nature》2005,437(7061):1003-1006
Past hydrological changes in Africa have been linked to various climatic processes, depending on region and timescale. Long-term precipitation changes in the regions of northern and southern Africa influenced by the monsoons are thought to have been governed by precessional variations in summer insolation. Conversely, short-term precipitation changes in the northern African tropics have been linked to North Atlantic sea surface temperature anomalies, affecting the northward extension of the Intertropical Convergence Zone and its associated rainbelt. Our knowledge of large-scale hydrological changes in equatorial Africa and their forcing factors is, however, limited. Here we analyse the isotopic composition of terrigenous plant lipids, extracted from a marine sediment core close to the Congo River mouth, in order to reconstruct past central African rainfall variations and compare this record to sea surface temperature changes in the South Atlantic Ocean. We find that central African precipitation during the past 20,000 years was mainly controlled by the difference in sea surface temperatures between the tropics and subtropics of the South Atlantic Ocean, whereas we find no evidence that changes in the position of the Intertropical Convergence Zone had a significant influence on the overall moisture availability in central Africa. We conclude that changes in ocean circulation, and hence sea surface temperature patterns, were important in modulating atmospheric moisture transport onto the central African continent.  相似文献   

5.
Indian Ocean temperature dipole and SSTA in the equatorial Pacific Ocean   总被引:6,自引:0,他引:6  
The observed sea surface temperature (SST) data of recent 100 years are analyzed and the existence of the Indian Ocean temperature dipole in the equatorial region is exposed further. It is very clear that the amplitude of the positive phase (higher SST in the west and lower SST in the east than normal) is larger than that of the negative phase (higher SST in the east and lower SST in the west). The dipole is stronger in September-November and weaker in January-April than in other months and it also appears obviously inter-annual and inter-decadal variations. Although the Indian Ocean dipole in the individual year seems to be independent of ENSO in the equatorial Pacific Ocean, in general, the Indian Ocean dipole has obviously negative correlation with the Pacific Ocean dipole (similar to the inverse phase of ENSO mode). The atmospheric zonal (Walker) circulation over the equator is fundamental to relate the two dipoles to each other.  相似文献   

6.
基于海面温度与海面高度异常的月均数据,采用EOF、SVD和功率谱分析等方法,对热带印度洋海面温度与海面高度进行特征分析,研究两者在时空结构上的相关性。利用EOF方法分析出海面温度第二模态与海面高度第一模态的空间结构类似,呈现偶极型。相关分析与功率谱表明,两模态的时间序列存在滞后相关和类似的周期结构。SVD结果显示,第一耦合模态的相关系数达0.7左右,且左右场的空间形态呈现东西反相。这表明,海面高度偶极型与海面温度的单极型和偶极型存在着相关。同时,海面高度指数也表现与偶极子指数类似的结构特征。针对上述诊断分析事实特征,对海面温度和海面高度偶极子形成的物理机制进行了初步分析,总结了前人所做的一些工作,指出其中可能的影响因素。  相似文献   

7.
Interdecadal variability in the tropical Indian Ocean has been analyzed based on the long-term climatic observational data. Case study showed that strong interannual signals formed at the surface can penetrate the depth of seasonal thermocline, where the anomalies last a couple of years. Artificial time series based on damping with exponential decay of selected strong events agree well with the detected interdecadal variability in the tropical Indian Ocean. A possible dynamic explanation for interdecadal variability in the tropical Indian Ocean was proposed that irregular interannual signals can lead to a slowly evolving climatic background with the interdecadal time scale through damping of the memory about anomalies in the seasonal thermocline.  相似文献   

8.
 应用谱分析的方法,讨论了东南亚降水分别与热带印度洋和太平洋海温的关系.得出热带印度洋和太平洋海温变化对东南亚降水影响的最佳落后时间长度.同时找出了上述2片海域对东南亚降水影响的几个关键区,它可以作为东南亚旱涝预报的强信号因子.  相似文献   

9.
The propagation characteristics of signals along different zonal-time profiles are analyzed using surface and subsurface temperature anomalies over the tropical Pacific and Indian oceans. Analyses show that there are intrinsic relationships between El Nio events in the eastern equatorial Pacific and dipole events in the equatorial Indian Ocean. In the region of tropical North Pacific between the equator and 16°N, there is a circle of propagation of subsurface temperature anomalies. El Nio events only happen when the warm subsurface signals reach the eastern equatorial Pacific. Dipole events are characterized when a warm subsurface signal travels along off-equatorial Indian Ocean to the western boundary. From these analyses, we believe that subsurface temperature anomalies can be considered to be the oceanographic early signal to forecast El Nio events in Pacific Ocean and dipole events in Indian Ocean, respectively.  相似文献   

10.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

11.
SINCE THE 1990S, THE CLIMATIC VARIABILITY ON INTERDE- CADAL TIME SCALES BECAME THE FOCUS OF THE INTERNATIONAL CLIMATOLOGY RESEARCH MISSIONS[1―3]. ON TIME SCALES OF A DECADE OR MORE, THE OCEAN CIRCULATION PREDOMINATEDHEAT BALANCE AND HYDROLOGICAL CYCLE, S…  相似文献   

12.
为了研究热带印度洋偶极子(IOD)爆发年其耦合作用迅速消亡是否由海流异常引起,利用1958—2007年热带印度洋月均海表面温度(SST)和海流数据,分析IOD的主要特征,并探讨IOD与ENSO和海流异常之间的相关关系。通过对印度洋偶极子指数(DMI)及其经Hilber-t Huang变换后得到的固有模态函数(IMF)与南方涛动指数(SOI)的相关性分析,指出IOD与ENSO之间可能存在相关性,其中,表现出准2a周期振荡的IMF-3与ENSO相关性最好。通过对IOD爆发年DMI的进一步分析,证实IOD具有季节锁相的重要特征,并探讨该季节变化与海流异常的相关关系。结果表明,海流异常在热带印度洋SST的耦合振荡中起重要作用,但是它可能不是引起IOD迅速消亡的原因。  相似文献   

13.
The tropical Pacific-Indian Ocean temperature anomaly mode and its effect   总被引:2,自引:0,他引:2  
Temperature anomaly in the Indian Ocean is closely related to that in the Pacific Ocean because of the Walker circulation and the Indonesian throughflow. So only the El Ni?o/Southern Oscillation (ENSO) in the Pacific cannot entirely explain the influence of sea surface temperature anomaly (SSTA) on climate variation. The tropical Pacific-Indian Ocean temperature anomaly mode (PIM) is presented based on the comprehensive research on the pattern and feature of SSTA in both Indian Ocean and Pacific Ocean. The features of PIM and ENSO mode and their influences on the climate in China and the rainfall in India are further compared. For proving the observation results, numerical experiments of the global atmospheric general circulation model are conducted. The results of observation and sensitivity experiments show that presenting PIM and studying its influence are very important for short-range climate prediction.  相似文献   

14.
Stott L  Cannariato K  Thunell R  Haug GH  Koutavas A  Lund S 《Nature》2004,431(7004):56-59
In the present-day climate, surface water salinities are low in the western tropical Pacific Ocean and increase towards the eastern part of the basin. The salinity of surface waters in the tropical Pacific Ocean is thought to be controlled by a combination of atmospheric convection, precipitation, evaporation and ocean dynamics, and on interannual timescales significant variability is associated with the El Ni?o/Southern Oscillation cycles. However, little is known about the variability of the coupled ocean-atmosphere system on timescales of centuries to millennia. Here we combine oxygen isotope and Mg/Ca data from foraminifers retrieved from three sediment cores in the western tropical Pacific Ocean to reconstruct Holocene sea surface temperatures and salinities in the region. We find a decrease in sea surface temperatures of approximately 0.5 degrees C over the past 10,000 yr, whereas sea surface salinities decreased by approximately 1.5 practical salinity units. Our data imply either that the Pacific basin as a whole has become progressively less salty or that the present salinity gradient along the Equator has developed relatively recently.  相似文献   

15.
 利用美国Scripps海洋研究所提供的1961—2003年的海洋热含量再分析资料、低纬高原148站降水资料和NCEP/NCAR环流再分资料,采用EOF分析、相关分析、合成分析等方法研究了印度洋暖池热含量变化,及其对低纬高原6—8月降水的影响及其可能原因.结果表明,印度洋暖池6—8月热含量变化E0F分析第1模态为全场一致型,解释方差为28%.印度洋暖池热含量与中国低纬高原6—8月降水的关系主要体现为与云南北部和东部等地区的显著正相关,这种相关关系源于前期2—4月,且随时间的推移其影响范围不断扩大,至同期时达到最好.在印度洋暖池热含量偏高年,暖池区持续的加热异常在东侧对流层低层激发出反气旋式环流异常,造成副高西伸,从而在副高外围形成一条自孟加拉湾向低纬高原区域的经向水汽输送带,为低纬高原区域输送大量的水汽,从而造成低纬高原区域降水增多.相反,在印度洋暖池热含量异常偏低时,西南风水汽输送带较弱,水汽输送无法穿越山脉输送到低纬高原区,造成低纬高原汛期降水偏少.
  相似文献   

16.
 在遵循Fisher判别准则的基础上,提出了一种判别系数和判别临界值随时间变化的新方法,并应用于能反映纵向岭谷区域降水主要变化规律的镇沅测站7月份降雨量的预报中.在前人工作指出印度洋海温变化对该区降水变化有显著影响的基础上,以前期秋季、冬季和春季印度洋海温距平的纬向梯度为预报因子,建立判别预报方程.实际应用结果表明,此方法具有较好的历史回报率和外推预报率;同时具有良好的预报稳定性.  相似文献   

17.
Indonesian Throughflow in an eddy-permitting oceanic GCM   总被引:4,自引:0,他引:4  
An eddy-permitting quasi-global oceanic GCM was driven by wind stresses from reanalysis data for the period of 1958-2001 to get the time series of the upper circulation in the Indonesian Sea. The model represents a reasonable pathway of Indonesian Throughflow (ITF) with Makassar Strait making the major passage transfer the North Pacific water southward. The simulated annual mean ITF transport is 14.5 Sv, with 13.2 Sv in the upper 700 m. Annual cycle is the dominant signal for the seasonal climatology of the upper layer transport. Both the annual mean and seasonal cycle agree well with the observation. The overall correlation between the interannual anomaly of the ITF transport and Nino 3.4 index reaches -0.65 in the simulation,which indicates that ENSO-related interannual variability in the Pacific is dominant in controlling the ITF transport. The relationship between the interannual anomalies of ITF and sea surface temperature in the Pacific, the Indian Ocean is not fixed in the simulation. In 1994, for instance, the intensive Indian Ocean sea surface temperature anomaly plays a dominant role in the formation of an impressive large transport of ITF.  相似文献   

18.
云南5月雨量与全球海温的关系分析研究   总被引:1,自引:1,他引:1  
 通过对海温与云南全省、云南东部和云南西部5月雨量的相关分析发现:海温对云南5月降水在时空上有很好的相关.5月降水与头年11月和同期太平洋海表温度存在有相同的‘-+-+’的相关分布型.印度洋北部对云南东部的影响更显著,而大西洋北部对西部的影响更显著.西部5月雨量与海表温度的相关总体不如东部的好,西部与东部最大的差异是在热带太平洋上.通过头年1月南大西洋海温可对来年云南5月降水进行预测.  相似文献   

19.
Using the NCEP/NCAR and JRA-25 monthly analysis data from 1979 to 2011, this paper analyzes the interdecadal variations of winter (Dec.–Feb.) mean surface air temperature (SAT) over East Asia by means of the empirical orthogonal function (EOF) analysis method. Two dominant modes were extracted, with the leading mode basically depicting a sign consistent SAT variation and the second mode describing a meridional dipole structure between the northern and southern parts of East Asia. These two modes can explain more than 60% of the variance. The leading mode is closely related to the intensity of Siberian high and the East Asian winter monsoon. The second mode exhibits a notable interdecadal shift in the late 1990s, with a turning point around 1996/1997. Winter SAT in the northern (southern) part of East Asia tends to be cooler (warmer) since the late 1990. Winter sea level pressure (SLP) differences between 1997–2011 and 1979–1996 show negative (positive) anomalies over southern (northern) Eurasia. At 500-hPa, an anomalous blocking high occurs over northern Eurasia, while a cyclone anomaly appears over northern East Asia. In addition, the upper-level East Asian jet stream tends to shift northward and become stronger after the late 1990. Indeed, the interdecadal shift of winter SAT over East Asia is dynamical consistent with changes of the large-scale atmospheric circulation in the late 1990s. The result indicates that previous autumn sea surface temperature (SST) in the North Atlantic Ocean, the Northern Indian Ocean and the western North Pacific Ocean, as well as sea ice concentration (SIC) in the northern Eurasia marginal seas and the Beaufort Sea also experienced obvious changes in the late 1990s. In particular, the interdecadal shifts of both SST in the North Atlantic Ocean and SIC in the Arctic Ocean and its marginal seas are well coherent with that of the winter SAT over East Asia. The results indicate that the interdecadal shift of East Asian winter SAT may be related to changes in the North Atlantic SST and the Arctic SIC in the late 1990s.  相似文献   

20.
用车贝雪夫多项式作降水场预报   总被引:2,自引:1,他引:1  
利用不规则格点上的车贝雪夫多项式及逐步回归的计算方法,用云南省降水距平资料建立印度洋海温场与云南省雨季降水场的预报方程,并做了1996 年及1997 年雨季降水预报检验,效果较理想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号