共查询到15条相似文献,搜索用时 78 毫秒
1.
支持向量机的参数选择决定了其学习性能和泛化能力,由于在参数的选择范围内可选择的数量是无穷的,在多个参数中盲目搜索最优参数是需要极大的时间代价,并且很难逼近最优。基于此,提出一种基于混沌粒子群的支持向量机参数选择算法。混沌粒子群优化算法是一种全局搜索方法,在选取SVM参数时,不必考虑模型的复杂度和变量维数.仿真表明,混沌粒子群优化算法是选取SVM参数的有效方法,可以取得令人满意的效果。 相似文献
2.
基于支持向量回归机和粒子群算法的改进协同优化方法 总被引:1,自引:0,他引:1
研究基于支持向量回归机和粒子群算法的改进协同优化方法.阐述了协同优化方法和支持向量回归机方法基本原理,为有效解决系统级优化协调困难问题,改善收敛性能,提高收敛速度,采用支持向量回归机构造系统级约束条件的近似模型,引入粒子群算法求解系统级和学科级优化问题.仿真计算结果表明,设计的协同优化方法可有效求解多学科设计优化问题,... 相似文献
3.
支持向量机(support vector machine,SVM)的参数选择对其性能有着重要的影响,使用穷举法优化参数需要大量的计算时间.为快速寻找最优参数组合,利用粒子群算法(particle swarm optimization,PSO)收敛速度快、简单易行等特点,将SVM参数作为粒子的解决方案.并利用图形处理器(graphics processing unit,GPU)并行化处理能力计算每个参数的分类准确率,从而提升了在一定的搜索空间内寻找最佳参数组合的计算速度.对UCI数据进行实验,对比结果显示,该方法能快速有效地获取优化结果. 相似文献
4.
支持向量机是一种基于结构风险最小化原理的新一代机器学习方法,在分类和回归估计方面已显示出了很好的应用前景.本文在简要介绍支持向量回归新方法的基础上,给出用于非线性系统进行辨识的支持向量机模型和多输入支持向量机的核函数构造方法,并将支持向量机与神经网络的非线性系统辨识效果进行了比较分析.实验结果表明,支持向量机具有比神经网络更强的非线性系统辨识能力和更好的泛化能力. 相似文献
5.
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。 相似文献
6.
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法. 针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 相似文献
7.
为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测. 相似文献
8.
基于特征集的选择、核函数参数的优化对支持向量机(SVM)模型的预测性能有着重要的影响,提出了一个粒子算法-支持向量机(PSO-SVM)模型.该模型采用PSO对特征集和核函数参数同时进行优化,从而提高SVM模型的预测结果.将所提出的PSO-SVM模型应用到财务危机预警中,取得了较佳的预测结果. 相似文献
9.
工业用水量预测对工业企业的规划、运行具有非常重要的作用。采用河南省周口市某食品加工企业近10年来工业用水量时间序列记录资料作为训练样本,提出了在支持向量机回归预测中采用粒子群算法优化参数的方法。通过算例分析表明,此算法能够显著提高预测的精度。 相似文献
10.
基于离散粒子群和支持向量机的故障诊断方法 总被引:2,自引:0,他引:2
针对与故障不相关的变量会影响分类器性能,从而导致故障诊断正确率下降,提出一种将离散粒子群算法(PSO)与支持向量机(SVM)相结合寻找故障特征变量的优化算法。该算法实现了数据降维和故障特征保留,有效地提高了故障诊断性能。基于连续搅拌釜式反应器(CSTR)的仿真实例验证了该算法古白有诗性. 相似文献
11.
《中南民族大学学报(自然科学版)》2017,(3):90-94
针对支持向量机(SVM)分类器参数选择问题,提出了基于鸟群算法(BSA)的SVM参数选择方法(BSASVM),以优化SVM惩罚参数和核参数.鸟群算法具有优化精度高、鲁棒性好等特点,将SVM参数作为鸟群算法目标函数的优化参数,在搜索到最优值的同时得到最优参数.通过8个UCI标准数据集的MATLAB仿真对比实验,验证了BSA-SVM能有效提高分类准确性.实验结果表明:BSA-SVM能更加准确地找到SVM最优参数,从而加强SVM学习与泛化能力,是一种有效的SVM参数优化方法. 相似文献
12.
为了对人参价格进行预测,分析了影响人参价格因素,通过K-fold交叉验证方法,利用粒子群算法对支持向量机的惩罚参数c和ggamma值进行寻优,建立起2010年1月~2011年12月林下参的价格预测模型.利用粒子群算法优化惩罚参数c为3.6974,利用radial basis function核函数的SVM(Support Vector Machine)对预测集1的预测相关系数为97.316%. 相似文献
13.
基于微粒群优化算法和支持向量机的软测量建模 总被引:1,自引:0,他引:1
在分析基本微粒群优化算法(PSO)和支持向量机(SVM)原理的基础上,采用带有末位淘汰机制的微粒群优化算法优化支持向量机的参数,建立了延迟焦化装置粗汽油干点软测量的微粒群支持向量机模型.该方法利用支持向量机结构风险最小化原则和PSO算法快速全局优化的特点,用于软测量建模.仿真实验表明:所建模型的泛化性能较好,模型具有较高的精度. 相似文献
14.
目前,支持向量机( SVM)常用的参数寻优方法存在易陷入局部极值的缺点,而其常用的核函数的逼近精度也有待提高.基于混沌映射的遍历性与随机性和小波变换的局部分析与特征提取能力,提出了一种混沌粒子群优化小波支持向量机(CPSO-WSVM)的算法,并应用它构建汇率预测模型.实验结果表明,相比传统的粒子群优化高斯核SVM(PSO-GSVM)的算法,CPSO-WSVM算法大大提高了预测的精度和效率,应用效果好. 相似文献