共查询到18条相似文献,搜索用时 125 毫秒
1.
一个关于无约束最优化的Powell搜索法和微粒群算法的混合算法 总被引:1,自引:1,他引:1
该文提出一种求解无约束最优化问题新的混合算法--Powell搜索法和微粒群算法的混合算法.主要目的是通过加入混合策略证明标准微粒群算法是能够被改进的.仿真结果证明了新算法是求解无约束最优化问题的一个高效的算法. 相似文献
2.
Powell搜索法和惯性权重非线性调整局部收缩微粒群算法的混合算法 总被引:4,自引:0,他引:4
提出一种求解无约束最优化问题的新的混合算法Powell搜索法和惯性权重非线性调整局部收缩微粒群算法的混合算法.该算法不需要计算梯度, 容易应用于实际问题中.通过对微粒群算法的修正, 使混合算法具有更加精确和快速的收敛性.首先利用20个基准测试函数进行仿真计算比较, 计算结果表明, 新混合算法在求解质量和收敛速率上都优于其他算法(PSO, GPSO和NM-PSO算法).其次, 将新混合算法和最新的各种协同PSO算法进行分析比较.结果表明, 新混合算法在解的搜索质量、效率和关于初始点的鲁棒性方面都远优于其他算法. 相似文献
3.
一个与Powell搜索相结合的混合免疫进化算法 总被引:1,自引:0,他引:1
提出一个求解无约束最优化问题的新的混合算法——Powell搜索法和免疫进化算法的混合算法.该算法不需要计算梯度,容易应用于实际问题中.通过对免疫进化算法的修正,使混合算法具有更加精确和快速的收敛性.利用4个基准测试函数进行仿真计算比较,结果表明新混合算法在解的搜索质量、效率和关于初始点的鲁棒性都远优于免疫进化算法,仿真结果表明了新算法是求解无约束最优化问题的一个高效的算法. 相似文献
4.
提出一种求解无约束最优化问题的新的混合算法Powell搜索法和惯性权重非线性调整局部收缩微粒群算法的混合算法. 该算法不需要计算梯度, 容易应用于实际问题中. 通过对微粒群算法的修正, 使混合算法具有更加精确和快速的收敛性. 首先利用20个基准测试函数进行仿真计算比较, 计算结果表明, 新混合算法在求解质量和收敛速率上都优于其他算法(PSO, GPSO和NM PSO算法). 其次, 将新混合算法和最新的各种协同PSO算法进行分析比较. 结果表明, 新混合算法在解的搜索质量、 效率和关于初始点的鲁棒性方面都远优于其他算法. 相似文献
5.
利用Powell搜索法求解精度高、收敛速度快和局部搜索能力强等优点,本文提出了一种与Powell搜索法相结合的改进微粒群算法实践.改进算法将微粒的搜索过程分为两阶段,第一阶段,将PSO算法的速度公式改进后进行搜索;第二阶段,将第一阶段的最后一代微粒作为Powell搜索法的初始点,让Powell搜索法与PSO算法交替进行.这样既克服了PSO算法易陷入局部最优的缺点,也大大提高了算法的求解精度和收敛速度,同时保持了微粒的多样性.仿真结果表明:同PSO算法相比,Powell-PSO算法具有较高的求解精度和较强的寻优能力,并且不论是对单峰函数还是多峰函数都能取得很好的优化效果. 相似文献
6.
利用Powell搜索法求解精度高、收敛速度快和局部强搜索能力强等优点,在简化微粒群算法的基础上,结合Powell搜索法,提出一种新型简化微粒群算法—Powell-SPSO算法.改进算法将Powell搜索法融合在简化微粒群算法中,让Powell搜索法与简化微粒群算法进行交替搜索.同时微粒的迭代利用了Powell搜索法的强搜索能力,使得算法改善了简化微粒群算法因每个微粒采用相同迭代公式进行进化而造成的微粒间的弱差异性,避免了易出现早熟、搜索速度慢等缺点.仿真结果表明,与标准微粒群算法(PSO)、简化微粒群算法(SPSO)、文献[10]算法相比较,不论是对高维函数还是低维函数,改进的算法都能够有效地避免早熟问题,并能显著地提高收敛速度和收敛精度. 相似文献
7.
李会荣 《海南大学学报(自然科学版)》2013,31(2):143-148
针对标准的差分进化(DE)算法在高维复杂的函数优化中易早熟收敛,进而导致搜索精度低甚至优化失败的问题,提出一种基于单纯形局部搜索的自适应的差分进化算法(SSADE).将DE算法的快速全局搜索能力与单纯形的强局部寻优能力有机结合起来,进一步提高了解的精度.参数自适应变化有效地维持了种群的多样性,自适应的变异策略扩大了个体的搜索范围,增强了算法寻优效果,仿真实验验证了新混合算法的有效性. 相似文献
8.
实现了对单纯形微粒群优化算法(SPSO)的改进.在利用单纯形法进行局部寻优的过程中,结合一维搜索中的0.618法选取压缩因子和扩张因子,将这一改进的方法应用在PID调节器的参数优化问题中,并进行了仿真实验.实验结果表明:改进后的单纯形微粒群优化算法的寻优过程更为完善,而且收敛速度更快. 相似文献
9.
在多种群协同进化和随机微粒群算法基础上,提出了一种改进的多种群随机微粒群算法,将各个子种群度独立的按照随机微粒群去进化,周期性的更新共享信息,共同寻求最优解。其中采用了两种不同的更新策略,并对这两种不同的方法进行详细的分析和比较。实验表明:合理调整更新周期能提高算法的收敛性。 相似文献
10.
11.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
12.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
13.
介绍了一种新的仿生优化算法—微粒群算法。与传统的优化算法相比,微粒群算法在全局优化性能等多方面具有相当的优越性。 相似文献
14.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性. 相似文献
15.
罗飞;林小兰;许玉格;李慧娟 《华南理工大学学报(自然科学版)》2008,36(8)
粒子群算法(Particle Swarm Optimization, PSO)具有模型简单,收敛的快速性和在连续系统中应用的优势,但存在着进化的后期收敛速度变慢,易陷入局部值的缺点。人工免疫 (Artificial Immune, AI) 优化算法利用人工免疫系统抗体多样性的机理和克隆选择算子搜索抗体群,具有很强的全局寻优能力,可以弥补粒子群算法的缺点。结合这两种算法的优缺点,提出了免疫粒子群 (Immune PSO, IPSO) 混合优化算法,并应用于混合电梯群控系统中进行派梯优化,取得了良好的效果。与人工免疫优化算法、粒子群算法分别进行比较,显示出免疫粒子群混合优化算法在优化派梯方案的优越性。文章的结尾展望了今后工作的研究重点和发展趋势。 相似文献
16.
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 相似文献
17.
基于人工免疫粒子群优化算法的动态聚类分析 总被引:1,自引:0,他引:1
模糊C-均值聚类算法受初始化影响较大,在迭代时容易陷入局部极小值。将粒子群优化算法与模糊G-均值聚类算法相结合,提出一种新颖的动态聚类算法。该算法利用人工免疫思想改进粒子群优化过程,在很大程度上避免了粒子群算法和聚类算法早熟现象的发生,全局搜索能力和局部搜索能力优于同类算法。利用聚类理论中的经验规则kmax≤√n确定聚类数k的搜索范围,在最优粒子基础上进化新一级种群,该方案可有效提高算法的收敛速度。两组数据的仿真实验表明,新算法优于传统模糊C-均值聚类算法,具有收敛速度快和解的精度高的特点。 相似文献
18.
带时间窗车辆路径问题的混合粒子群算法 总被引:7,自引:1,他引:7
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法. 相似文献