首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在原有改进型理论燃烧温度(Tf)模型的基础上,进一步针对煤粉燃烧率、煤粉分解热以及灰分中Si O2在高温下还原耗热等方面内容进行修正和完善,提出更为全面的Tf计算模型,并对比分析了传统模型、原改进型模型以及本模型中富氧率、鼓风温度、鼓风湿度以及喷煤比等因素变化时对理论燃烧温度的影响规律.计算结果表明,与传统模型以及原有改进型模型相比,使用本模型时不同鼓风参数对理论燃烧温度的影响更为趋于"缓和",高炉下部炉缺状态相对更为稳定.事实上高炉在"高富氧,低煤比"或"低富氧,高煤比"两种操作下均未出现Tf过高或不足的问题,也印证了本模型能更贴切地反映实际生产高炉下部的炉缸热状态.  相似文献   

2.
通过两段卧式燃烧炉模拟攀钢高炉风口燃烧条件,进行了煤粉燃烧过程的研究,考察了煤粉的配比、富氧率、热风温、喷煤量以及煤的粒度等因素对煤粉燃烧过程的影响。  相似文献   

3.
通过两段卧式燃烧炉模拟攀钢高炉风口燃烧条件,进行了煤粉燃烧过程的研究,考察了煤粉的配比、富氧率、热风温、喷煤量以及煤的粒度等因素对煤粉燃烧过程的影响.  相似文献   

4.
高炉富氧条件下喷煤极限研究   总被引:3,自引:0,他引:3       下载免费PDF全文
通过对攀钢4号高炉富氧条件下煤粉在风口回旋区内的燃烧率的数学模拟研究可知:在攀钢4号高炉入炉焦比580kg/t,风温1050℃等生产条件下,当喷煤量超过155kg/t,风中富氧率高于2%,才能使高炉顺行。如果风中富氧低于4%,吨铁最大喷煤量为175kg/t。当喷煤量超过210kg/t,风中富氧率即使达到10%,也不能满足高炉最佳热状态,将造成未燃煤粉量过高,导致高炉不顺。  相似文献   

5.
为进一步探究高炉富氧操作下的冶炼规律,用已建立的高炉富氧综合模型对不同操作条件下的高炉热状态进行计算和分析.结果表明:炉缸喷吹循环煤气能有效抵消富氧操作引起的燃料比增长,且在低富氧操作时高炉不需喷吹循环煤气就能满足上下部热量平衡;增加喷煤量需要与提高富氧率相对应,不同的喷煤量具有不同的富氧操作区间.模型求得富氧操作条件下鼓风加湿极限值,即鼓风加湿不应超过21.2g/m3,相应的富氧率极大值约为4.6%.  相似文献   

6.
采用数学模型预测高炉富氧喷吹煤粉的燃烧过程,数学模型包括气相流动、煤粉挥发分的热解和燃烧、残炭的燃烧、辐射传热和固体颗粒相的运动等子模型.模拟结果表明,单筒煤枪和热风混合效果不好,不利于煤粉燃烧;由于直吹管和风口空间小,因而富氧对煤粉燃烧率影响不大;富氧可提高风口端部平均氧含量,有利于煤粉在回旋区内燃烧.  相似文献   

7.
富氧喷煤燃烧过程的三维数值模拟   总被引:3,自引:1,他引:3  
采用数学模型预测高炉富氧喷吹煤粉的燃烧过程,数学模型包括气相流动,煤粉挥发分的热解和燃烧,残炭的燃烧,辐射传热和固体颗粒相的运动等子模型,模拟结果表明,单筒煤枪和热风混合效果不好,不利于煤粉燃烧,由于直吹管和风口空间小,因而富氧对煤粉燃烧率影响不大;富氧可提高风口端部平均氧含量,有利于煤粉在回旋区内燃烧。  相似文献   

8.
对高炉风口前理论燃烧温度进行了修正,建立了基于燃料(焦炭和煤粉)发热量的计算模型,即把燃料的不完全燃烧所放出的热量转化为燃料完全燃烧所放出的热量与燃料不完全燃烧的热损失之差。最后分析了煤种、煤比、富氧率等因素对理论燃烧温度的影响。  相似文献   

9.
王晓明 《科技信息》2009,(5):378-379
同煤钢铁现有4座高炉,利用煤炭价格优势实现对450m^3高炉富氧喷煤,(因其它三座小高炉富氧喷煤效果不太明显),450m^3高炉实施富氧喷煤势在必行,即充分利用放散的氧气,又可提高风口带的理论燃烧温度,是提高煤比的有力措施。  相似文献   

10.
放宽高炉喷吹煤粉粒度的工业实验   总被引:8,自引:3,他引:8  
在安钢炼铁厂l#高炉喷吹瘦煤时进行了煤粉粒度放宽的工业试验。将小于74μm(—200目)的比例由70%放宽到30%后,磨煤能力提高了21%。采用粒度较粗的煤粉,风口前循环区变长,煤粉的置换比和喷煤比都有所提高,置换比和喷煤比提高的程度随富氧率升高而增加,使高炉生产效益有了一定的改进。  相似文献   

11.
为提高唐银钢铁公司高炉喷煤量,研究了烟煤配比、强化高炉喷煤操作和提高煤比、煤焦置换比等问题,得到:煤粉成分V 22%~25%,A〈12%,S〈0.8%;粒度-200网目以下占50%,0.074~0.15 mm占45%,0.15~0.5mm占5%。同时强化高炉喷煤操作,采取提高煤粉燃烧率,选择适宜的操作制度,提高精料水平,高炉操作调剂等措施,来提高喷煤比、煤焦置换比。  相似文献   

12.
新型高炉喷煤模拟燃烧实验装置设计   总被引:1,自引:0,他引:1  
设计了一种适合模拟高炉喷煤燃烧的实验装置,满足热风既高温又高速的煤粉喷吹条件,可以模拟氧气高炉条件下的煤粉喷吹.喷吹瞬间流场的数值模拟结果表明,当喷吹气体速度达到最大值时,直吹管气体平均速度为162.35 m.s-1.利用该装置研究了氧气高炉条件下煤粉的燃烧规律.结果表明:煤粉的燃烧率随O/C原子比的增加而增加;在低O/C原子比条件下,煤粉的燃烧率较低,但其增幅比较明显;无烟煤的燃烧率低于烟煤.  相似文献   

13.
从中国两座高炉风口回旋区取出煤粉样研究表明:当喷煤量达到140kg/t.HM(占燃料总量的27%)时,虽然煤早在直吹管内就开始了挥发和燃烧,但煤在回旋区内并不能完全燃烧。不过这一不完全燃烧还不破坏高炉的顺行。 用两种方法在实验室内进行了粉煤燃烧动力学研究,一种是用电阻丝加热鼓风,另一种则用等离子火炬。发现煤的燃烧率在40~80μm范围内几乎和煤的粒度大小成反比,它随着风温的提高而提高,直到1475℃;富氧到40%仍很有效。当空气过剩系数降到1.2~1.3以下则煤的燃烧率突然下降。当鼓风旋转时燃烧加快。 滴落区内,炉渣和煤灰或未燃尽的半焦的混合并不是提高喷煤量的控制因素。喷煤枪位置、角度和形状影响气固两相分布的研究表明:这些因素对喷入煤粒在助燃空气流中的均匀分布有显著影响,这一研究是采用激波管和纹影法完成的。  相似文献   

14.
高炉提高喷煤量的分析与研究   总被引:1,自引:0,他引:1  
在对煤粉在高炉中的行为进行分析的基础上,从改善原燃料质量、高风温、富氧鼓风、高炉冶炼及煤气流分布等方面对提高高炉喷煤量进行全面分析与研究,总结提高煤比的普遍规律。  相似文献   

15.
涟钢6号高炉喷煤工艺模型的开发和应用   总被引:1,自引:1,他引:0  
涟源钢铁集团有限公司6号高炉喷煤工艺模型包括指标计算模型、回旋区模型、最佳富氧率模型、能量利用模型。利用涟钢高炉的实际生产数据,对模型进行了调试和校正。应用此模型,可以针对不同的高炉、生产操作和原料条件进行与喷煤有关的计算,得出相应的技术指标,指导现场的操作。  相似文献   

16.
本文模仿高炉风口前燃烧条件,用试验与计算方法,对喷吹煤粉燃烧速度进行研究,按假设条件建立了喷吹煤粉燃烧速度的数学模型,试验与计算结果基本接近,按高炉风口燃烧特性,将模型作了修正,得出了适合高炉喷吹条件下煤粉燃烧速度变化规律的数学模型,在均匀稳定喷吹情况下,高炉适宜的喷煤量应为140—160kg/吨铁。  相似文献   

17.
SiO2还原对高炉风口前理论燃烧温度的影响   总被引:1,自引:0,他引:1  
风口前理论燃烧温度是衡量炉缸热状态的重要参数之一,而SiO2在风口前被碳还原对其产生的影响一直被忽略.通过实验研究了高炉风口前不同位置的试样,得到进入风口回旋区焦炭的温度和不同位置试样渣中SiO2的含量,从而确定出在风口回旋区SiO2的还原率,并建立了考虑SiO2还原情况下理论燃烧温度的计算公式,最后在富氧喷煤的条件下,分析和讨论了煤粉中灰分变化对理论燃烧温度的影响因素.  相似文献   

18.
通过开发的高炉能量管理优化系统,讨论了高炉富氧大喷煤条件下,未燃煤粉对高炉能量分配及各项冶炼指标的影响。  相似文献   

19.
炉顶煤气循环-氧气鼓风高炉炼铁新技术的工艺特点决定了煤粉在其回旋区内的燃烧条件与传统高炉相比将发生很大变化.本文建立了氧气高炉直吹管—风口—回旋区下部煤粉流动和燃烧的数学模型,研究了入口布置方式、氧含量、循环煤气温度以及H2 O和CO2含量对煤粉燃烧的影响.模拟结果表明:三种引入方式中,假想的循环煤气和氧气混合进入方式明显优于循环煤气和氧气单独进入方式.当氧的体积分数由80%增加到90%,相应的煤粉燃尽率由87.525%提高到93.402%.循环煤气温度对煤粉燃尽率的影响并不显著.循环煤气中H2 O和CO2的体积分数提高5%,风口轴线上气体的最高温度分别降低124 K和113 K.  相似文献   

20.
以2 500 t/d带四通道煤粉燃烧器的水泥分解窑为研究对象,通过理论分析和数值仿真方法,对分解窑内混煤富氧燃烧特性和燃烧规律进行研究,并通过实验验证仿真计算结果的可靠性。研究结果表明:随着燃烧器一次风O_2摩尔分数增加,煤粉着火温度逐渐降低,燃烧温度、窑内传热速率逐渐增加;应用富氧燃烧技术能显著改善分解窑混煤燃烧特性,大幅提高无烟煤掺混比;与一般空气助燃相比,当一次风O_2摩尔分数提高到27%时,火焰平均温度提高97 K,焦炭燃尽率提高5.09%,在此O_2摩尔分数下,无烟煤掺比增至60%时,混煤仍能高效稳定燃烧,火焰温度和形状仍能满足熟料煅烧要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号