首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biological science uses multiple species concepts. Order can be brought to this diversity if we recognize two key features. First, any given species concept is likely to have a patchwork structure, generated by repeated application of the concept to new domains. We illustrate this by showing how two species concepts (biological and ecological) have been modified from their initial eukaryotic applications to apply to prokaryotes. Second, both within and between patches, distinct species concepts may interact and hybridize. We thus defend a semantic picture of the species concept as a collection of interacting patchwork structures. Thus, although not all uses of the term pick out the same kind of unit in nature, the diversity of uses reflects something more than mere polysemy. We suggest that the emphasis on the use of species to pick out natural units is itself problematic, because that is not the term’s sole function. In particular, species concepts are used to manage inquiry into processes of speciation, even when these processes do not produce clearly delimited species.  相似文献   

2.
Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.  相似文献   

3.
This paper is a contribution to our understanding of the constructive nature of Greek geometry. By studying the role of constructive processes in Theodoius’s Spherics, we uncover a difference in the function of constructions and problems in the deductive framework of Greek mathematics. In particular, we show that geometric problems originated in the practical issues involved in actually making diagrams, whereas constructions are abstractions of these processes that are used to introduce objects not given at the outset, so that their properties can be used in the argument. We conclude by discussing, more generally, ancient Greek interests in the practical methods of producing diagrams.  相似文献   

4.
“Teleosemantic” or “biosemantic” theories form a strong naturalistic programme in the philosophy of mind and language. They seek to explain the nature of mind and language by recourse to a natural history of “proper functions” as selected-for effects of language- and thought-producing mechanisms. However, they remain vague with respect to the nature of the proposed analogy between selected-for effects on the biological level and phenomena that are not strictly biological, such as reproducible linguistic and cultural forms. This essay critically explores various interpretations of this analogy. It suggests that these interpretations can be explicated by contrasting adaptationist with pluralist readings of the evolutionary concept of adaptation. Among the possible interpretations of the relations between biological adaptations and their analogues in language and culture, the two most relevant are a linear, hierarchical, signalling-based model that takes its cues from the evolution of co-operation and joint intentionality and a mutualistic, pluralist model that takes its cues from mimesis and symbolism in the evolution of human communication. Arguing for the merits of the mutualistic model, the present analysis indicates a path towards an evolutionary pluralist version of biosemantics that will align with theories of cognition as being environmentally “scaffolded”. Language and other cultural forms are partly independent reproducible structures that acquire proper functions of their own while being integrated with organism-based cognitive traits in co-evolutionary fashion.  相似文献   

5.
6.
Experimental manipulation of microevolution (changes in frequency of heritable traits in populations) has shed much light on evolutionary processes. But many evolutionary processes occur on scales that are not amenable to experimental manipulation. Indeed, one of the reasons that macroevolution (changes in biodiversity over time, space and lineages) has sometimes been a controversial topic is that processes underlying the generation of biological diversity generally operate at scales that are not open to direct observation or manipulation. Macroevolutionary hypotheses can be tested by using them to generate predictions then asking whether observations from the biological world match those predictions. Each study that identifies significant correlations between evolutionary events, processes or outcomes can generate new predictions that can be further tested with different datasets, allowing a cumulative process that may narrow down on plausible explanations, or lead to rejection of other explanations as inconsistent or unsupported. A similar approach can be taken even for unique events, for example by comparing patterns in different regions, lineages, or time periods. I will illustrate the promise and pitfalls of these approaches using a range of examples, and discuss the problems of inferring causality from significant evolutionary associations.  相似文献   

7.
The selected effect account is regarded by many as one of the most attractive accounts of function. This account assumes that the function of a trait is what it has been selected for. Recently, it has been generalized by Justin Garson to include cases in which selection is understood as a simple sorting process, i.e., a selection process between entities that do not reproduce. However, once extended, this generalized selected effect account seems to ascribe functions to entities for which it looks unintuitive to do so. For instance, the hardness of rocks on a beach being differentially eroded by waves would be ascribed the function of resisting erosion. Garson provides one central argument why, despite appearance, one should not ascribe functions in cases of such sorting processes. In this paper, I start by presenting his argument, which hinges on whether a collection of entities form a population. I find it wanting. I argue instead that some selection processes are evolutionarily more or less interesting and that when a selection process is regarded as evolutionarily uninteresting, it will yield an uninteresting form of function rather than a reason for withholding the concept of function altogether.  相似文献   

8.
The nature of quantum computation is discussed. It is argued that, in terms of the amount of information manipulated in a given time, quantum and classical computation are equally efficient. Quantum superposition does not permit quantum computers to “perform many computations simultaneously” except in a highly qualified and to some extent misleading sense. Quantum computation is therefore not well described by interpretations of quantum mechanics which invoke the concept of vast numbers of parallel universes. Rather, entanglement makes available types of computation processes which, while not exponentially larger than classical ones, are unavailable to classical systems. The essence of quantum computation is that it uses entanglement to generate and manipulate a physical representation of the correlations between logical entities, without the need to completely represent the logical entities themselves.  相似文献   

9.
The mixed lineage leukemia (MLL) family of genes, also known as the lysine N-methyltransferase 2 (KMT2) family, are homologous to the evolutionarily conserved trithorax group that plays critical roles in the regulation of homeotic gene (HOX) expression and embryonic development. MLL5, assigned as KMT2E on the basis of its SET domain homology, was initially categorized under MLL (KMT2) family together with other six SET methyltransferase domain proteins (KMT2A–2D and 2F–2G). However, emerging evidence suggests that MLL5 is distinct from the other MLL (KMT2) family members, and the protein it encodes appears to lack intrinsic histone methyltransferase (HMT) activity towards histone substrates. MLL5 has been reported to play key roles in diverse biological processes, including cell cycle progression, genomic stability maintenance, adult hematopoiesis, and spermatogenesis. Recent studies of MLL5 variants and isoforms and putative MLL5 homologs in other species have enriched our understanding of the role of MLL5 in gene expression regulation, although the mechanism of action and physiological function of MLL5 remains poorly understood. In this review, we summarize recent research characterizing the structural features and biological roles of MLL5, and we highlight the potential implications of MLL5 dysfunction in human disease.  相似文献   

10.
Arnold Arluke and Clinton Sanders (1996) have argued that human societies index both humans and animals as belonging to particular rungs of the social hierarchy. They term this multispecies ranking the “sociozoological scale”. This paper will investigate how claims at the 1875 Royal Commission on Vivisection about the sensitivity of particular species and breeds not only reflected assumptions about human social hierarchy but also blurred the boundaries between the human and the animal in the process. It will further be shown how these claims were informed by 18th and 19th century humanitarianism, classism, scientific racism and evolutionary theory, and how these influences combined in claims-making about the relative capacity of particular animals to sense pain and ethical duties towards them that followed from this sensitivity. Particular attention will be given to the opposing efforts of commissioners Thomas Henry Huxley and Richard Holt Hutton to demarcate human and animal sensitivity and exempt companion animals from vivisection respectively. The paper concludes by considering the sociozoological orders constituted by the 1876 Cruelty to Animals Act, particularly through its focus on calculating pain, and the legacy and limitations of this constitution.  相似文献   

11.
The ergodic hierarchy, randomness and Hamiltonian chaos   总被引:1,自引:1,他引:1  
Various processes are often classified as both deterministic and random or chaotic. The main difficulty in analysing the randomness of such processes is the apparent tension between the notions of randomness and determinism: what type of randomness could exist in a deterministic process? Ergodic theory seems to offer a particularly promising theoretical tool for tackling this problem by positing a hierarchy, the so-called ‘ergodic hierarchy’ (EH), which is commonly assumed to provide a hierarchy of increasing degrees of randomness. However, that notion of randomness requires clarification. The mathematical definition of EH does not make explicit appeal to randomness; nor does the usual way of presenting EH involve a specification of the notion of randomness that is supposed to underlie the hierarchy. In this paper we argue that EH is best understood as a hierarchy of random behaviour if randomness is explicated in terms of unpredictability. We then show that, contrary to common wisdom, EH is useful in characterising the behaviour of Hamiltonian dynamical systems.  相似文献   

12.
In 1895 sociologist and philosopher Georg Simmel published a paper: ‘On a connection of selection theory to epistemology’. It was focussed on the question of how behavioural success and the evolution of the cognitive capacities that underlie it are to be related to knowing and truth. Subsequently, Simmel’s ideas were largely lost, but recently (2002) an English translation was published by Coleman in this journal. While Coleman’s contextual remarks are solely concerned with a preceding evolutionary epistemology, it will be argued here that Simmel pursues a more unorthodox, more radically biologically based and pragmatist, approach to epistemology in which the presumption of a wholly interests-independent truth is abandoned, concepts are accepted as species-specific and truth tied intimately to practical success. Moreover, Simmel’s position, shorn of one too-radical commitment, shares its key commitments with the recently developed interactivist–constructivist framework for understanding biological cognition and naturalistic epistemology. There Simmel’s position can be given a natural, integrated, three-fold elaboration in interactivist re-analysis, unified evolutionary epistemology and learnable normativity.  相似文献   

13.
Summary 1)Peace with nature means that human relations with other beings are controlled constitutionally within a community to which not only mankind belongs. Constitutionally restricted and in this sense non-violent, human domination is legitimate. 2) What we are allowed to do depends on who we are. Mankind is the species in which nature emerges to express herself in language, art and reason, and in doing so she moves herself forward with us. 3) How we should relate ourselves to nature also depends on our understanding of nature. Nature basically is acting nature, or creative power, and in this sense equally is the nature of the beings of nature. 4) Some artifacts are more natural and correspond to peace with nature better than others which are unnatural and violate peace with nature. Also in our fellow world, and even apart from man's influence, nature is whatought to be. 5) The technologically less advanced countries should not repeat the mistakes of the industrialized countries. The traditional pattern of industrial economy cannot be generalized to all peoples and violates peace with nature. 6) Plants are not only most sensitive indicators to environmental pollution but to the loss of humanity as well.  相似文献   

14.
In 1981, David Hubel and Torsten Wiesel received the Nobel Prize for their research on cortical columns—vertical bands of neurons with similar functional properties. This success led to the view that “cortical column” refers to the basic building block of the mammalian neocortex. Since the 1990s, however, critics questioned this building block picture of “cortical column” and debated whether this concept is useless and should be replaced with successor concepts. This paper inquires which experimental results after 1981 challenged the building block picture and whether these challenges warrant the elimination “cortical column” from neuroscientific discourse. I argue that the proliferation of experimental techniques led to a patchwork of locally adapted uses of the column concept. Each use refers to a different kind of cortical structure, rather than a neocortical building block. Once we acknowledge this diverse-kinds picture of “cortical column”, the elimination of column concept becomes unnecessary. Rather, I suggest that “cortical column” has reached conceptual retirement: although it cannot be used to identify a neocortical building block, column research is still useful as a guide and cautionary tale for ongoing research. At the same time, neuroscientists should search for alternative concepts when studying the functional architecture of the neocortex. keywords: Cortical column, conceptual development, history of neuroscience, patchwork, eliminativism, conceptual retirement.  相似文献   

15.
16.
This study considers the contribution of Francesco Patrizi da Cherso (1529–1597) to the development of the concepts of void space and an infinite universe. Patrizi plays a greater role in the development of these concepts than any other single figure in the sixteenth century, and yet his work has been almost totally overlooked. I have outlined his views on space in terms of two major aspects of his philosophical attitude: on the one hand, he was a devoted Platonist and sought always to establish Platonism, albeit his own version of it, as the only currect philosophy; and on the other hand, he was more determinedly anti-Aristotelian than any other philosopher at that time. Patrizi's concept of space has its beginnings in Platonic notions, but is extended and refined in the light of a vigorous critique of Aristotle's position. Finally, I consider the influence of Patrizi's ideas in the seventeenth century, when various thinkers are seeking to overthrow the Aristotelian concept of place and the equivalence of dimensionality with corporeality. Pierre Gassendi (1592–1652), for example, needed a coherent concept of void space in which his atoms could move, while Henry More (1614–1687) sought to demonstrate the reality of incorporeal entities by reference to an incorporeal space. Both men could find the arguments they needed in Patrizi's comprehensive treatment of the subject.  相似文献   

17.
I propose a new perspective with which to understand scientific revolutions. This is a conversion from an object-only perspective to one that properly treats object and process concepts as distinct kinds. I begin with a re-examination of the Copernican revolution. Recent findings from the history of astronomy suggest that the Copernican revolution was a move from a conceptual framework built around an object concept to one built around a process concept. Drawing from studies in the cognitive sciences, I then show that process concepts are independent of object concepts, grounded in specific regions of the brain and involving unique representational mechanisms. There are cognitive obstacles to the transformation from object to process concepts, and an object bias—a tendency to treat processes as objects—makes this kind of conceptual change difficult. Consequently, transformation from object to process concepts is disruptive and revolutionary. Finally, I explore the implications of this new perspective on scientific revolutions for both the history and philosophy of science.  相似文献   

18.
A prevalent narrative locates the discovery of the statistical phenomenon of regression to the mean in the work of Francis Galton. It is claimed that after 1885, Galton came to explain the fact that offspring deviated less from the mean value of the population than their parents did as a population-level statistical phenomenon and not as the result of the processes of inheritance. Arguing against this claim, we show that Galton did not explain regression towards mediocrity statistically, and did not give up on his ideas regarding an inheritance process that caused offspring to revert to the mean. While the common narrative focuses almost exclusively on Galton’s statistics, our arguments emphasize the anthropological and biological questions that Galton addressed. Galton used regression towards mediocrity to support the claim that some biological types were more stable than others and hence were resistant to evolutionary change. This view had implications concerning both natural selection and eugenics. The statistical explanation attributed to Galton appeared later, during the biometrician-mutationist debate in the early 1900s. It was in the context of this debate and specifically by the biometricians, that the development of the statistical explanation was originally attributed to Galton.  相似文献   

19.
Work throughout the history and philosophy of biology frequently employs ‘chance’, ‘unpredictability’, ‘probability’, and many similar terms. One common way of understanding how these concepts were introduced in evolution focuses on two central issues: the first use of statistical methods in evolution (Galton), and the first use of the concept of “objective chance” in evolution (Wright). I argue that while this approach has merit, it fails to fully capture interesting philosophical reflections on the role of chance expounded by two of Galton's students, Karl Pearson and W.F.R. Weldon. Considering a question more familiar from contemporary philosophy of biology—the relationship between our statistical theories of evolution and the processes in the world those theories describe—is, I claim, a more fruitful way to approach both these two historical actors and the broader development of chance in evolution.  相似文献   

20.
Species survival is dependent on successful reproduction. This begins with a desire to mate, followed by selection of a partner, copulation and in monogamous mammals including humans, requires emotions and behaviours necessary to maintain partner bonds for the benefit of rearing young. Hormones are integral to all of these stages and not only mediate physiological and endocrine processes involved in reproduction, but also act as neuromodulators within limbic brain centres to facilitate the expression of innate emotions and behaviours required for reproduction. A significant body of work is unravelling the roles of several key hormones in the modulation of mood states and sexual behaviours; however, a full understanding of the integration of these intrinsic links among sexual and emotional brain circuits still eludes us. This review summarises the evidence to date and postulates future directions to identify potential psycho-neuroendocrine frameworks linking sexual and emotional brain processes with reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号