共查询到18条相似文献,搜索用时 46 毫秒
1.
完全二部图K5,n的点可区别IE-全染色 总被引:2,自引:0,他引:2
设G是简单图,图G的一个k-点可区别IE-全染色(简记为k-VDIET染色)f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:A↓uv∈E(G),有f(u)≠f(v);A↓u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}。数min{k}G有一个k-VDIET染色}称为图G的点可区别IE-全色数,记为χut^ie(G)。本文给出了完全二部图K5,n(n≥6)的点可区别IE-全色数。 相似文献
2.
设G是简单图,图G的一个中k-点可区别IE-全染色(简记为k-VDIET染色)。f是指一个从V(G) E(G)到{12,…,k)的映射,且满足:uv∈E(G),有f(v);u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}{f(u)}uv∈E(G)。数min{k|G有一个k-VDIET染色}称为... 相似文献
3.
利用组合分析法、反证法及构造具体染色,讨论并给出了完全二部图K8,n(n≥7770)的点可区别E-全色数. 相似文献
4.
5.
利用组合分析法、反证法及构造具体染色的方法,讨论并给出了完全二部图K8,n(3975≤n≤7769)的点可区别E-全色数. 相似文献
6.
图G的一个E-全染色f是指使相邻点染以不同颜色且每条关联边与它的端点染以不同颜色的全染色。对图G的一个E-全染色f,一旦∠u,v∈V(G), u≠v,就有C(u)≠C(v),其中C(x)表示在f下点x的颜色以及与x关联的边的色所构成的集合,则f称为图G的点可区别的E-全染色,简称为VDET染色。令χevt(G)=min{k|G存在k-VDET染色},称χevt(G)为图G的点可区别E-全色数。利用分析法和反证法,讨论并给出了完全二部图K10,n(10≤n≤90)的点可区别E-全色数。 相似文献
7.
G是一个简单图,G的一个E-全染色f是指使相邻点着不同色且每条关联边与它的端点着以不同的色的全染色。设f为G的一个E-全染色。对任意点x∈V(G),用C(x)表示在f下点x的色以及与x关联的边的颜色所构成的集合。若u,v∈V(G),u≠v,有C(u)≠C(v),则f称为是图G的点可区别的E-全染色,简称为VDET染色。图G的VDET染色所用颜色数目的最小值称为图G的点可区别E-全色数或简称为VDET色数,记为χevt(G)。讨论并给出了完全二部图K3,n(n≥18)的点可区别E-全色数。 相似文献
8.
G是一个简单图,G的一个IE全染色f是一个映射,该映射满足:对u,v∈V(G),u≠v,有C(u)≠C(v).图G的一个点可区别IE-全染色f是指一个从V(G)∪E(G)到{1,2,…,k}的映射,且满足:对uv∈E(G),有f(u)≠f(v);对u,v∈V(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv):uv∈E(G)},简称k-VDIET.数min{k:G有一个k-VDIET染色}称为图G的点可区别IE-全色数或简称VDIET色数,记为χievt(G).本文讨论并给出了完全二部图K9,n的点可区别IE-全色数. 相似文献
9.
设G是阶至少为2的简单图.在点可区别正常全染色的基础上,提出了图G的点可区别一般全染色,即VE-全染色,并且得到了轮、扇和完全二部图K1,n和K2,n的点可区别VE-全色数,据此提出了一个猜想. 相似文献
10.
利用反证法、 组合分析法及构造具体染色的方法, 讨论完全二部图K9,n(9≤n≤92)的点可区别E 全染色问题, 给出K9,n(9≤n≤92) 的最优点可区别E-全染色, 并得到了K9,n(9≤n≤92)的点可区别E-全色数. 相似文献
11.
利用组合分析的方法先讨论了完全二部图K_(5,7)的点强可区别全染色,在此基础之上给出了两种具体的关于完全二部图K_(5,7)的点强可区别全染色方案.此结果的给出不仅确定了完全二部图K5,7的点强可区别全色数为9,而且对于胡志涛所提出的关于完全二部图的点强可区别全染色的猜想:"如果m≥4且n2 m-2时,那么χvst(Km,n)=n+3"中当m=5时作出了否定,从而进一步确定了此猜想成立的范围. 相似文献
12.
13.
简单图G的正常边染色f,若对于任意u,v∈V(G),有C(u)≠C(v),称,是图G的点可区别边染色,其中C(u)={f(uv)│uv∈E(G)}。若满足││Ei│—│Ej││≤1(i,j=1,2,…,k),其中任意e∈Ei,f(e)=i(i=1,2,…,k),称f是图G的点可区别均匀边染色。讨论了若干图的Mycielski图的点可区别均匀边染色。 相似文献
14.
利用组合分析法,考虑完全二部图K_(6,8)的点强可区别全染色方案,给出一种可行的染色方案.结果表明,完全二部图K_(6,8)的点强可区别全色数为10. 相似文献
15.
借助已有的完全二部图K_(2,n)和K_(3,n)的点可区别IE-全色数的结论,利用组合分析及构造具体染色的方法探讨完全二部图K_(2,n)和K_(3,n)的一般点可区别全染色问题,确定了K_(2,n)和K_(3,n)的一般点可区别全色数. 相似文献
16.
考虑完全二部图K_(6,n)(6≤n≤38)的点可区别E-全染色.利用组合分析法、反证法及构造染色的方法,给出一类特殊完全二部图的点可区别E-全染色.结果表明:当6≤n≤10时,K_(6,n)的点可区别E-全色数为5;当11≤n≤38时,K_(6,n)的点可区别E-全色数为6. 相似文献
17.
联图 Ws∨Km,n的邻点可区别全色数 总被引:1,自引:0,他引:1
图的邻点可区别全染色(AVDTC)数为χat(G),有猜想:xat(G)≤Δ(G)+3. 联图 Ws∨Km,n的邻点可区别全色数被确定为χat(Ws∨Km,n)=Δ( Ws∨Km,n)+1或Δ(Ws∨Km,n)+2. 相似文献
18.
设G的阶数不小于2的简单连通图。G的k-正常全染色称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同。这样的k中最小者称为G的邻点可区别全色数。本文主要是给出了星图和路的联图的邻点可区别全色数,并提出了一猜想。 相似文献