共查询到20条相似文献,搜索用时 0 毫秒
1.
利用子群的s-拟正规嵌入性给出了p-幂零性的判别条件,同时探讨了子群的s-拟正规嵌入性对有限群的xφ-超中心性质的影响. 相似文献
2.
群G的子群H称为G的正规嵌入子群, 如果对于|H|的每个素因子p, 存在G的一个正规子群K,使得H的一个Sylow p-子群也是K的一个Sylow p-子群. 假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群H是G的正规嵌入子群, 得到G为p-幂零群以及超可解群的一些充分条件, 部分结果被推广到群系. 相似文献
3.
设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于|H|的每个素因子p,H的Sylowp-子群也是G的某个π-拟正规子群的Sylow p-子群.利用子群的π-拟正规嵌入性,得到了有限群G为p-幂零群的一些充分条件:设G是有限群,P是G的一个Sylow p-子群,其中p是|G|的一个素因子且使得(|G|,p-1)=1.若P的所有极大子群皆在NG(P)中π-拟正规嵌入且NG(P)’也在G中π-拟正规嵌入,则G为p-幂零群.推广并加深了一些已知结果. 相似文献
4.
设H是有限群G的子群.如果H的Sylow子群也分别是G的某个S-拟正规子群的Sylow子群,则称H在G中S-拟正规嵌入.利用子群的S-拟正规嵌入性给出了有限群为p-幂零群的一个充分条件,推广了已有的结论. 相似文献
5.
通过分析群阶和特殊素因子,利用Sylow子群二次极大子群的π-拟正规嵌入性质,得到:设H是有限群G的正规子群使得G/H为p-幂零群, P是H的一个Sylow p-子群, 这里p是|G|的一个素因子.若P的二次极大子群均在G中π-拟正规嵌入且下列条件之一满足,则G是p-幂零:(1) (|G|, p2-1)=1; (2) NG(P)/CG(P)是p-群. 相似文献
6.
设H是有限群G的子群.如果H为G的S-拟正规闭包HsqG的Hall子群,则称H为G的一个Hall S-拟正规嵌入子群.如果一个非幂零有限群的任一真子群幂零,则称这个非幂零群为Schmidt群.该文证明了:如果有限群G的每一个Schmidt子群均为G中Hall S-拟正规嵌入子群,则G′幂零. 相似文献
7.
设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于H的每个素因子p,H的Sylow p-子群也是G的某个π-拟正规子群的Sylow p-子群.利用极大(小)子群的π-拟正规嵌入性,得到了如下包含超可解群类和幂零群系的饱和群系的充分条件.1)设是包含超可解群类的一个饱和群系,且N是有限群G的一个正规子群使得G/N∈.如果F*(N)的任意奇阶Sylow子群Q的所有极大子群均在NG(Q)中π-拟正规嵌入,F*(N)的Sylow 2-子群的极大子群在G中π-拟正规嵌入,则G∈.2)设是包含的一饱和群系,且H是有限群G的一个正规子群使得G/H∈.如果H的极小子群或4阶循环子群均在G中π-拟正规嵌入,则G∈.推广并加深了一些已知结果. 相似文献
8.
9.
设H是有限群G的一个子群。称H在G中S-拟正规嵌入的,如果对于H的每个素因子p,H的Sylowp-子群也是G的某个S-拟正规子群的Sylowp-子群。利用S-拟正规嵌入子群研究有限群的结构,推广了前人的一些结果。 相似文献
10.
群G的子群H称为在G中是弱SS拟正规可补的,如果G中存在一个子群T,使得G=HT且H∩T≤HSSG,其中HSSG表示含在H中G的某个SS拟正规子群.利用弱SS拟正规可补子群的概念,得到关于p幂零群和幂零群的一些新刻画. 相似文献
11.
S-拟正规子群对有限群结构的影响 总被引:8,自引:1,他引:7
设C为有限群,称G的子群H在G中S-拟正规,如果H和G的每个Sylow子群相乘可换,利用子群的S-拟正规性给出了有限群成为幂零群或超可解群的一些充分条件,并得到了有限群G的2-极大子群在G中S-拟正规时G的一个完全分类定理. 相似文献
12.
有限群的S-拟正规子群 总被引:2,自引:0,他引:2
海进科 《曲阜师范大学学报》1995,(1)
利用S-拟正规群的概念,得到如下结果定理1设A、B是G的可解子群,且G=AB,若A、B在G里S-拟正规,刚G可解.定理2设A、B为G的幂零子群,且G=AB,若A、B在G内S-拟正规,则G幂零. 相似文献
13.
利用有限群G的子群、Sylowp-子群、c*-拟正规嵌入子群,研究了有限群G的幂零性. 相似文献
14.
引入了弱s*-拟正规嵌入子群的概念,并利用弱s*-拟正规嵌入子群研究p-幂零群的构造,推广了最近的一些结果. 相似文献
15.
设G为有限群,H是G的子群.称H是G的S-拟正规子群,如果对G的任意Sylow 子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的.设d是p-群P的最小生成元个数.考虑P的d个极大子群构成的集合Μd(P)=P1,...,Pd且使得它们的交是P的Frattini子群Φ(P).对Μd(P)中的群在满足C*-正规假设条件下群的结构进行了研究,并推广了最近的一些结论. 相似文献
16.
设G为有限群,H是G的子群。称H是G的S-拟正规子群,如果对G的任意Sylow 子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的。设d是p-群P的最小生成元个数。考虑P的d个极大子群构成的集合Μd(P)={P1,…,Pd}且使得它们的交是P的Frattini子群Φ(P)。对Μd(P)中的群在满足C*-正规假设条件下群的结构进行了研究,并推广了最近的一些结论。 相似文献
17.
如果群G的子群A与G的每个Sylow子群Gp可交换(即AGp=GpA),则称A为G的S-拟正规子群。对任意有限群G,我们利用子群的S-拟正规性刻划群G的结构,给出G为p-幂零群和p-超可解群的若干充分条件,特别证明了如下结果:设N△G,且N为p-可解群,G/N为p-超可解群。若N的每个Sylow p-子群(或循环p-子群)的极大子群在G内S-拟正规,则G为p-超可解群,并推广了相关文献的结果。 相似文献
18.
群G的一个子群H称为G的几乎τ-嵌入子群,如果G有一个s-拟正规子群T使得HT在G中s-拟正规且H∩T≤HτG,其中HτG是所有含于H的G的τ-拟正规子群生成的子群.通过研究有限群G的Sylowp-子群(p是|G|的一个素因子)的极大子群的几乎τ-嵌入性,得到群G的p-超可解性.同时,又通过研究有限群G的极小子群的几乎τ-嵌入性,得到群G的p-幂零性. 相似文献
19.
设G为有限群,H≤G,称H为G的NS-拟正规子群,如果对于满足(p,|H|)=1每个素数p,和适合H≤K≤G的每个K,均有NK(H)包含K的某些Sylow-p子群.证明了NS-拟正规子群的若干性质,并应用它研究了有限群的超可解性. 相似文献
20.
有限群的S—拟正规子群 总被引:2,自引:0,他引:2
海进科 《曲阜师范大学学报》1995,21(1):23-25
利用S-拟正规子群的概念,得到如下结果设A、B是G的可解子群,且G=AB,若A、B在G里S-拟正规,则G可解。 相似文献