首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用基于密度泛函理论的第一性原理方法研究BaC2高压相R3m的晶体结构、 力学、  热力学和电子结构等性质. 计算结果表明:  BaC2的I4mmm相较高压相R3m的离子性更强. 在0 K 时, 由BaC2的I4mmm相转变为R3m相的压强为3.6 GPa, 与实验结果相符. 高压相R3m的弹性常数满足波恩\|黄昆判据, 因而其晶格力学性质稳定. 布居数分析表明, 在高压下, 从Ba原子至C原子的电荷转移在I4mmm至R3m相变过程中所起的作用较大.   相似文献   

2.
利用在金刚石对顶砧(DAC)上的集成微电路技术, 高压原位测量类石墨相C3N4的电阻. 实验结果表明, 在293 K, 5 GPa和11 GPa的压力点, 电阻明显下降, 与理论计算的结构相变压力点一致; 在77 K, 5 GPa压力点的电阻基本不变; 11 GPa压力点的电阻变化更明显. 在21 GPa压力点附近, C3N4的电阻发生突变, 表明此时存在一个未知的相变.   相似文献   

3.
运用密度泛函(DFT)平面波赝势方法(PWP),计算了镁铝尖晶石三种物相的状态方程和热力学生成焓以及在0~50GPa高压范围内的力学性质.研究结果表明:利用状态方程得到的镁铝尖晶石转变为CF相和CT相的相变压强分别为26.79GPa和30.19GPa,与实验值误差分别为+0.79GPa和-11.81GPa;而利用热力学生成焓,在GGA近似下得到的CF相的相变压强为24.52GPa;LDA近似下CT相的相变压强为39.85GPa,与实验值误差为-1.48GPa和-2.15GPa.在对高压下镁铝尖晶石三种相结构的力学稳定性的分析发现,尖晶石相在压力超过30GPa时力学结构变得不稳定,而两个高压相在...  相似文献   

4.
采用第一性原理方法研究Li3S和Li2S在0~50 GPa下的晶体结构、 电子性质与超导电性. 结果表明: 当压力高于16 GPa时, Li3S由Li2S和Li单质合成, 其高压相变序列为P63/m→P63/mmc→Pm-3m; Li3S呈金属性, 但其电声相互作用较弱, 不是超导体; 预测的Li2S的高压相变序列与已有结果相符, 在50 GPa下的Li2S仍未实现金属化.  相似文献   

5.
采用平面波赝势密度泛函理论方法研究了惰性气体化合物XeF2在0~80GPa压力范围内的结构性质,计算值与实验值相符合.根据我们计算得到的不同压力XeF_2的弹性常数,结合力学稳定性判据,证实XeF_2的I4/mmm结构在80GPa压力范围内是稳定的.计算了不同压力下XeF_2的带隙,发现带隙随着压力的增大而减小.当压力大于10GPa时,XeF_2的带隙随压力的增大近似呈线性减小趋势.表明随着压力的增大XeF_2晶体由绝缘体向半导体转变,且金属性越来越强.  相似文献   

6.
采用基于密度泛函理论的第一性原理方法研究Nb2N3的晶体结构、 力学、 晶格动力学和电子性质.  结果表明: Nb2N3常压下具有正交η-Ta2N3结构, 其弹性常数满足波恩-黄昆判据, 且晶格动力学稳定; Nb2N3具有较大的体弹性模量(304 GPa)和硬度(19.3 GPa), 由于Nb 4d-轨道与N 2p-轨道杂化形成三维Nb\|N共价键, 因此Nb2N3为离子性较强的半导体材料.  相似文献   

7.
研究了C过量掺杂Ge2Sb2Te5GST</sup>相变材料的相变特性与微观结构,制备了一系列包含周期性2nmC薄膜与GST薄膜的超晶格结构复合相变薄膜材料.研究发现,相变材料的相变性能与GST的厚度有较强的依赖关系,反映出C掺杂比例对GST相变性能的影响.随着GST厚度的逐渐降低,高温下C的自发扩散导致GST的掺杂效应逐渐增强,超晶格体系的非晶—晶态相变逐渐被抑制.在此结构中,过量的C掺杂导致体系越来越难以发生相变,甚至失去相变特性.同时,由于C-Ge、C-Sb和C-Te键不稳定,多次可逆的非晶—晶态转变后体系将同时出现未掺杂的GST成分与C掺杂的GST的成分,因此有可能出现稳定的三相.最后,制备了基于[GST(8nm)/C(2nm)]5相变薄膜的相变存储器件,器件的测试结果证实体系能够出现稳定的三电阻态.  相似文献   

8.
运用第一性原理和机器学习算法预测2种Ba2O2S结构,其具有P-3m1和P63/mmc空间群.通过弹性和声子特性计算发现2种结构都满足动力学和弹性稳定性要求.分析电子结构发现2种结构均为直接带隙半导体,带隙分别为4.6和4.5 eV,Ba—S和Ba—O键都是离子键型.B1-Ba2O2S和B2-Ba2O2S的晶格热导率表现出各向异性,[100]和[010]方向的热导率比[001]方向的晶格热导高约1.6倍.预测的2种结构的多晶热导率约为1.86和1.40 W·m-1·K-1,因而Ba2O2S可以作为潜在的隔热材料.由于B1-Ba2O2S的群速度外积分值要高于B2-Ba2O2S,因此导致B1-Ba2O2S的热导率略高于B2-Ba2  相似文献   

9.
半导体光催化可以利用太阳能驱动CO2光催化还原制备碳氢燃料,成为研究热点.石墨相氮化碳(g-C3N4)具有制备简便和可见光响应性能的优点,是CO2还原的热门光催化材料。但是它具有缺陷多、比表面积小和光生载流子易复合等缺点,光催化CO2还原性能不高.为此,介绍了高CO2还原活性的g-C3N4研究进展,内容包括:(1)g-C3N4研究基础(分子结构、制备方法与电子能带结构);(2)高活性g-C3N4的分子设计策略(缺陷调控、元素掺杂、表面等离子体处理、单原子催化和异质结构建等),重点讨论了改性方式对g-C3N4的光吸收、光电性能和CO2还原产物选择性的影响.最后建议未来聚焦结晶氮化碳的修饰改性研究,强调利用原位和瞬态表征技术指导高CO2还原活性...  相似文献   

10.
利用高压原位电阻率测量技术, 观察0~48.2 GPa内WSe2电阻率随压强的变化规律, 并测量了WSe2电阻率在不同压强下随温度的变化关系.  结果表明: WSe2电阻率在压力作用下的变化规律与杂质能级压致离化后的传导有关; 由于压致能隙闭合, WSe2在38.1 GPa时发生等结构的半导体性到金属性的相转变.  相似文献   

11.
采用量子输运方法研究了二维(2D)磁性NbSi2N4-WSi2N4-NbSi2N4面内异质结的光生电流效应.该异质结具有C2v非空间反演对称性,在可见光范围内,用线偏光垂直及倾斜照射时,均能激发显著的光生电流效应,产生自旋极化且偏振敏感的光电流.光电流与偏振角(θ)和入射角(α)均为余弦依赖(cos(2θ),cos(2α))关系.两种照射方式下均能产生纯自旋流及完全自旋极化的光电流.在垂直照射时,能取得完美的自旋阀效应.这些结果表明,二维磁性NbSi2N4-WSi2N4-NbSi2N4异质结在低能耗自旋电子学及低维光电探测领域具有应用潜力.  相似文献   

12.
随着我国酸性油气藏勘探开发的深入,处于对井控安全的考虑,需对酸性气体侵入后井筒多相流动及相态转变规律进行研究。针对H2S特殊的物理性质,并考虑其在井筒内相态变化,建立了钻井过程中H2S侵入时井筒流动与传热的数学模型。将井筒传热、压力与H2S物性参数耦合迭代计算,给出了求解方法并编写程序进行数值计算。计算结果表明:井口回压较小时,H2S在环空上升过程中由液态转化为气态,相态转变点上部为气液两相流,其压力梯度较小,下部为井筒单相流,其压力梯度较大。H2S侵入速度对环空压力和相变井深均有影响。随着侵入量增大,井底压力先急剧减小,后基本保持不变,而相变井深先增大后减小。井口回压对井底压力影响较大。随着井口回压增大,井底压力增大,但影响程度逐渐减小。井口回压不仅可以控制井筒是否发生相变,而且对相变井深位置影响十分大。对是否考虑传热对相变井深和井底压力的影响进行了对比分析。研究对提高酸性油气藏开发勘探安全具有一定指导意义。  相似文献   

13.
硼(B)、碳(C)、氮(N)轻元素因具有较小的原子半径和极强的相互键合能力,其形成的化合物极易形成强共价键和高原子密度的三维网状致密结构,从而成为寻找制备超硬材料的备选体系.本文基于最新研究的机械性能优异的体心四方碳结构模型,构造了一种具有四方对称结构、空间群为I4/mmm的BC2N潜在超硬化合物新结构.利用基于密度泛函理论的第一性原理计算方法,系统地研究了该化合物四方相新结构的热力学、力学和动力学稳定性,表明该四方相BC2N至少在0–60 GPa的压力范围内是力学和动力学稳定的;热力学计算结果显示该结构结合能稍高于BC2N化合物中最稳定的纤锌矿结构,表明新构造的四方结构是BC2N化合物的一个亚稳结构,且其不可压缩性大于其他的硼-碳-氮类化合物如B2CN, BC4N等.在结构稳定性研究的基础上,本文计算了该四方相BC2N化合物在0–60 GPa压力范围内的电子结构,发现其在零压下具有2.16 eV的带宽,为半导体,且随着压力的增加,带隙逐渐加宽;高压弹性特性研究表明BC2N化合物四方结构的体弹性模量、剪切模量、杨氏模量、泊松比、德拜温度、最小热导率和弹性波速均随压力增加呈现出不同的增加趋势且属脆性体质,其弹性各向异性在高压下变得更加明显;同时,大的体弹性模量、大的剪切模量及高维氏硬度表明所构造的空间群为I4/mmm的四方结构是BC2N化合物的一种潜在超硬新结构.  相似文献   

14.
利用同步辐射X射线衍射方法,研究了金刚石对顶砧中碳化锆(ZrC)的状态方程和结构相变,通过密度泛函理论(DFT)计算了该材料的高压压缩行为.结果表明:ZrC在压强为10.3 GPa时,发生拓扑相变;在压强为13.7 GPa时,相变结束.此外,ZrC立方相的体弹模量为158.6(8.6)GPa,相变后的结构体弹模量为233.8(8.8)GPa.  相似文献   

15.
石墨相氮化碳(g-C3N4)是一种典型的非金属n型聚合物半导体光催化剂.因其具有合适的带隙(2.7 eV),高的热稳定性和化学稳定性,较强的可见光响应等优良特性而被广泛关注.基于g-C3N4构建出2种或2种以上的半导体异质结,具有提高可见光利用率,增强氧化还原能力,促进光生载流子转移和分离等作用,因而成为一种提高光催化活性的可行和高效策略.综述了近年来g-C3N4基异质结的构建及其光催化机理的研究进展,并进一步展望了研究前景.  相似文献   

16.
Gd2Zr2O7作为一种绝缘体材料广泛用于在飞机发动机及燃气轮机的热障涂层,该文利用第一性原理对227GdZrO随着压强的增加产生的结构相变进行了研究,发现Gd2Zr2O7在压强为28.5GP时,由焦绿石结构(pyrochlore)变为有缺陷的萤石结构(defect-fluorite);当压强加到43.2GP时,晶格结构被扭曲,变为扭曲的萤石结构(distorted defect-fluorite).该文还对Gd2Zr2O7电子结构进行了计算,通过分析态密度图发现,当压强到达15.3GP时,带隙宽度由3eV减小到0.5eV,晶体由绝缘体转变为半导体,继续加压到28.5GP时,带隙宽度变为3.7eV,晶体又由半导体转变为绝缘体.  相似文献   

17.
溶剂热法制备TiO2/g-C3N4及其光催化性能   总被引:1,自引:0,他引:1  
采用溶剂热法合成了可见光响应的TiO2/g-C3N4复合光催化剂,并对TiO2/g-C3N4进行质子化处理。通过X射线衍射(XRD)、氮气吸附-脱附BET法、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、紫外-可见漫反射(UV-vis DRS)和荧光光谱(PL)等方法对样品进行了表征,并以甲基橙(MO)光催化降解为模型反应,考察了可见光下制备的样品的光催化性能。结果表明,多孔TiO2纳米晶与g-C3N4形成具有"芝麻饼"形貌的复合结构;TiO2/g-C3N4复合光催化剂的光吸收带边扩展到465 nm,较TiO2出现明显红移;TiO2与g-C3N4能带匹配耦合,有效地抑制了电子与空穴的复合;质子化处理过程能够提高可见光区吸收强度和电子的传导能力,增强了TiO2的光催化活性。  相似文献   

18.
采用分子动力学的方法研究了不同CaF2含量下CaO-Al2O3-CaF2三元渣系熔体结构的变化规律,包括熔渣的短程结构、中程结构和键角的变化.结果表明:Ca—F,Al—F,Ca—O,Al—O的平均键长分别为0.2345,0.1895,0.2325,0.1745nm.随着CaF2的加入,Ca2+与配位的阴离子(O2-,F-)存在动态平衡现象,总配位数维持在6~7之间.研究体系中Al—O四面体结构存在由复杂(Q4和Q3)向简单(Q2和Q1)的转变,同时还会发生Al—O四面体[AlO45-向[AlO3F]4-结构的转变,两种转变的综合作用使熔体的网络结构解聚,为CaF2改善CaO-Al2O3-CaF2熔渣的流动性提供了合理的微观解释.键角分析表明F-在体系中更多的是替换原来O2-的位置,以Al3+为核心的网络结构依然为四面体结构,没有引起大规模的原子重新排列.  相似文献   

19.
利用晶体结构预测软件USPEX找到了一种Bi的高压稳定相C4,其空间群是: .采用投影缀加平面波方法和广义梯度近似的第一性原理计算,研究了该新结构和Bi 的A7 结构、高压下的单斜结构(Bi-Ⅱ相)、Host-guest 结构(Bi-Ⅲ相)和bcc结构(Bi-Ⅴ相)在不同压强下的压缩行为.拟合出了状态方程,得到各相之间的能量压力关系,进而分析了各相发生相变时的压强.对比发现:常压下C4 结构与bcc 结构的能量非常接近,前者仅仅比后者低10 3 eV/atom.随着压强的升高,发现在50 GPa时C4 结构比bcc结构的能量低10 2eV/atom.运用基于密度泛函微扰理论的赝势平面波方法的ESPRESSO 软件包,计算了C4 结构与bcc 结构在10 GPa压强下的电声耦合常数,从而推算出两者相应的超导转变温度分别是5.8K和7.4K.另外发现两者随着压强的升高而均呈现降低的趋势,在50 GPa时, C4 结构与bcc 结构的分别是1.5 K和1.8 K.  相似文献   

20.
利用基于密度泛函理论的第一性原理的计算方法,研究了ZnP2的结构与弹性特征.结果表明:ZnP2的四方结构(α-ZnP2)和单斜结构(β-ZnP2)在零压下的弹性常量符合力学稳定标准;α-ZnP2与β-ZnP2的体积模量分别为78GPa和54GPa,剪切模量分别为49GPa和27GPa,杨氏模量分别为121GPa和68GPa,德拜温度分别为451K和335K,泊松比分别为0.24和0.29.α-ZnP2与β-ZnP2均有较小的弹性各向异性,但前者弱于后者.可压缩性分析预测:在25GPa附近,存在结构相变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号