首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在Euler-Lagrange框架下,基于应用分形理论对凝聚态Al2O3夹杂物形貌结构进行定量分析的基础上,数值模拟研究了连铸中间包钢液中不同形貌凝聚态Al2O3夹杂物的运动行为.研究发现中间包钢液流场和夹杂物形貌尺寸共同影响夹杂物在钢液中的运动行为.随着尺寸的变大,簇群状和致密球形两种形貌Al2O3夹杂物上浮去除率都逐渐增加.在相同尺寸下,簇群状Al2O3夹杂物上浮去除率比致密球形Al2O3夹杂物低;随着尺寸的增加,簇群状Al2O3夹杂物上浮去除率相比于同尺寸致密球形Al2O3夹杂物降低得就越多.计算结果显示,与同尺寸的致密球形Al2O3夹杂物相比,直径为20、40、60和80μm的簇群状Al2O3夹杂物上浮去除率分别降低了4.8%、5.7%、6.4%和12.5%.  相似文献   

2.
研究了粒径为20~40nm的Al2O3纳米粉在铁液中的运动行为.结果表明,经分散后加入铁液中的Al2O3纳米粉,在铁液中保持60min后,Al2O3粒子没有产生明显的团聚或聚集成微米级或更大尺寸的粒子,粒子尺寸为20~60nm,呈现较好的弥散分布状态.采用布朗运动理论描述纳米粒子在铁液中的运动行为.纳米粒子在铁液中不易发生碰撞和聚集,理论分析与实验结果一致.纳米Al2O3在铁液中不易团聚或聚集的行为与钢液中一般的Al2O3夹杂物易碰撞聚集而长大的行为不同.  相似文献   

3.
Ti-Mg复合脱氧钢中夹杂物细化机制   总被引:1,自引:0,他引:1  
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-A12 O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势.  相似文献   

4.
D2冷作模具钢最常见的失效形式为磨损失效,改善夹杂物的数量、形态和分布能降低钢的磨损率.利用颗粒镁在高温下生成镁蒸气,并通过高纯氩气携带通入钢液中,考察了镁对钢中非金属夹杂物的变性效果.实验结果表明,镁蒸气通入钢液后,钢中非金属夹杂物尺寸明显变得细小,夹杂物的成分从单纯的Al2O3和Al2O3与Cr,Mo和V等合金氧化物的复合产物向富MgO的MgO和Al2O3复合夹杂物转变.铸态组织的观察结果表明细小夹杂物在钢液中的残存对于凝固和相变过程中钢的晶粒细化有利.  相似文献   

5.
大颗粒不变形夹杂物是造成弹簧钢疲劳失效的主要原因。为了优化高级别弹簧钢55SiCr中夹杂物的组成、形态与分布,采用两次LF炉进站精炼方式,并在二次精炼过程中设计了两种不同碱度的渣系,通过氧氮分析仪、电子探针等检测手段对比分析两种工艺下钢中全氧含量、夹杂物尺寸与成分。结果表明,低碱度精炼渣使弹簧钢夹杂物成分趋近于Al2O3-SiO2-CaO系统中低熔点塑性化区间,但不利于大颗粒夹杂物的控制与消除;高碱度精炼渣使夹杂物的平均尺寸更小,分布更均匀,但夹杂物中Al2O3含量偏高;高碱度精炼渣有利于钢液的深脱氧,钢的洁净度更高,但需注意连铸过程中钢液的氧化。  相似文献   

6.
本研究制备了不同氧、硫含量的实验钢,采用SEM-EDX和CSLM探讨了钢中夹杂物类型及高温演变规律.结果表明,脱氧生成的MgO大多为球形,而MgO·Al2O3呈现不规则形状.单独铝脱氧钢中Al2O3夹杂物通过移动、碰撞、聚合的方式形成大型簇团.铝镁复合脱氧钢中夹杂物形貌和动态演变随着[Al],[Mg]和[S]含量的变化呈现出不同的现象.当[Mg],[Al]含量满足MgO生成条件时,夹杂物无明显聚合现象,呈弥散分布的特征;当[Mg],[Al]含量位于MgO·Al2O3生成区域时,未观察到团簇状夹杂物出现,但夹杂物粒径较MgO大;当夹杂物成分同时满足MgO和MgS生成条件时,夹杂物聚合趋势明显,推测是硫化物的形成促进了夹杂物的聚合现象.  相似文献   

7.
为了充分了解帘线钢中夹杂物,对钢液凝固过程析出夹杂物进行了分析. 结果发现:Al2O3夹杂物在凝固过程中先析出,且Al2O3夹杂物长大的限制性环节为[Al]在钢液中的扩散;当凝固分数为0.44时SiO2开始析出,且SiO2长大的限制性环节为[O]在钢液中的扩散;析出夹杂物的半径随着冷却强度的增大而减小;当冷却速度为100 K·min-1时,凝固末期析出Al2O3夹杂物的半径为2.5 μm,析出复合Al2O3-SiO2夹杂物的半径为4.7 μm;随着凝固的进行,夹杂物中SiO2含量增加,Al2O3含量下降.  相似文献   

8.
高温纯铁熔体中外加氧化铝纳米粉的研究   总被引:2,自引:0,他引:2  
在工业纯铁熔体中加入纳米Al2O3颗粒,熔炼后得到铸锭试样. 用扫描电镜(SEM)及能谱(EDS)研究了铸锭金相试样中夹杂物的存在状态及成分. 采用非水溶液电解法分离、收集铸锭中的非金属夹杂物,用SEM及EDS分析了夹杂物的形貌、大小和元素组成. 结果表明,外加的纳米Al2O3颗粒能够在纯铁熔体中稳定存在,并与杂质元素所生成的夹杂物发生复合,复合夹杂物的尺寸为5~10 μm. 纳米Al2O3颗粒一般存在于复合夹杂物的内部. 未发现纳米Al2O3团聚烧结成大于10 μm颗粒的现象. 从热力学和颗粒运动行为方面进一步分析了纳米Al2O3在纯铁熔体中的稳定性和团聚烧结成大颗粒的可能性.  相似文献   

9.
采用非水溶液电解的方法,萃取分离出SAE8620齿轮钢中含MgO复合夹杂物,利用扫描电镜、能谱分析仪对夹杂物的组成、类型和形貌特征进行分析。结果表明,SAE8620齿轮钢在LF精炼过程中,含MgO复合夹杂物中MgO、CaO含量逐渐增加,SiO2含量逐渐减少,Al2O3含量呈先上升后下降的趋势;夹杂物的形貌多不规则,呈块状且棱角分明;夹杂物类型主要为SiO2-Al2O3-MgO、SiO2-MgO、SiO2-Al2O3-CaO-MgO等,此类夹杂物的尺寸较大、熔点较高,直接影响钢材的质量和使用性能。  相似文献   

10.
采用格子Boltzmann方法对钢液中夹杂物上浮及上浮过程中的碰撞行为进行直接数值模拟研究。结果表明,不同尺寸夹杂物颗粒上浮速度的模拟结果和理论值基本一致,表明本文所采用的数值算法能够精确有效地对钢液中固相夹杂物颗粒运动行为进行研究。当钢液中直径为80μm的夹杂物颗粒位于直径为40μm的下方并一起上浮时,直径为80μm的夹杂物颗粒会逐渐追赶上直径为40μm的夹杂物颗粒并发生碰撞形成大尺寸凝聚体,凝聚体的上浮速度显著大于二者单独上浮时的上浮速度。对于直径为40μm的夹杂物来说,形成凝聚体后的上浮速度比单独上浮时的上浮速度增加300%。实际炼钢过程中,采取必要的措施增加夹杂物颗粒之间上浮过程中的碰撞凝聚,对于提高夹杂物颗粒的上浮速度,尤其是小尺寸夹杂上浮去除速度,提高钢液的洁净度具有重要的意义。  相似文献   

11.
系统研究了Ti-IF钢冶炼过程和铸坯中含Ti夹杂物的组成、分布与微观形貌,揭示了含Ti夹杂物的衍变规律.热力学分析和实验结果表明:在IF钢冶炼过程中无TiN生成,含Ti夹杂物的存在形式是以TiO2为主的钛氧化物结合其他氧化物的复合夹杂:而在连铸凝固过程中,由于钢液温度降低和元素的偏析作用,TiN夹杂以异质形核的方式生成.IF钢铸坯中非金属夹杂物主要是大尺寸Al2O3颗粒和存在中间过渡层的TiN—Al2TiO5-Al2O3复合夹杂物,其形核长大过程是[Al]、[Ti]和[O]先在细小的Al2O3颗粒上反应生成一层Al2TiO5,然后TiN在Al2TiO5表面形核长大.根据连铸过程和铸坯中含钛夹杂物的研究得出,Ti-IF钢铸坯中TiN夹杂难以去除,但是可以使其变性以实现对钢中含钛夹杂物的控制.  相似文献   

12.
研究了EAF-LF-VD-CC流程冶炼气瓶钢30CrMo时精炼过程中含MgO.Al2O3夹杂物的生成和转化,对夹杂物进行了三维分析观察.研究结果表明:LF精炼30min后夹杂物中Mg含量减小,Ca含量增加,MgO.Al2O3夹杂物消失.LF精炼后期Mg含量变化不大,Ca含量减小,未出现MgO.Al2O3夹杂物;VD精炼过程中夹杂物中的Mg含量增加,Ca含量变化不大,重新生成了MgO.Al2O3夹杂物;精炼过程中MgO.Al2O3夹杂物可以向复合夹杂物转变的,但为防止精炼后期MgO.Al2O3夹杂物重新生成必须保证钢液中具有一定的钙含量.  相似文献   

13.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2 O3、MgO.Al2 O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO--Al2O3系夹杂物→CaO--MgO--Al2O3系夹杂物"顺序发生转变,其中MgO--Al2 O3系夹杂物向CaO--MgO--Al2 O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢;降低T[O]含量有利于生成较低熔点的CaO--MgO--Al2O3系夹杂物.  相似文献   

14.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2O3转变为MgO·Al2O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10-5~5.5×10-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

15.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

16.
1873K下钢液中Ti-Al复合脱氧热力学分析及夹杂物生成   总被引:1,自引:0,他引:1  
对1873K下钢液中Ti-Al-O系复合夹杂物的形成进行了理论和实验研究. 理论计算和实验结果表明,钢液中Ti-Al-O系的Al-O基本趋于平衡,钢液中自由氧由Al含量控制. Ti-Al-O系复合夹杂物的形成主要由a_(Ti)/a_(Al)值确定. 根据热力学数据计算得出了Ti-Al-O系复合夹杂物(Al_2O_3-Ti_3O_5-Ti_2O_3)的稳定区域;随着a_(Ti)/a_(Al)的增加,夹杂物逐步由Al_2O_3转变为Ti_3O_5夹杂物. 当钢液中自由氧含量较高时容易生成Ti3O5夹杂物. 计算结果和观察到的实验结果一致.  相似文献   

17.
对首钢京唐生产IF钢的同一浇次前2炉的RH精炼、镇静和中间包浇铸过程进行了系统取样,并利用Aspex自动扫描电子显微镜分析统计了钢中夹杂物的成分、尺寸等信息.研究发现,Al2O3-TixO复合夹杂物在Ti合金化和二次氧化的情况下都会生成,并随着精炼的进行逐渐转变为Al2O3,这与热力学计算的结果一致;而Al2O3可以作为Al2O3-TixO的形核核心,形成Al2O3-TixO包裹Al2O3的夹杂物,并且在Al2O3-TixO转变为Al2O3的过程中会导致钢滴进入夹杂物内部,从而形成Al2O3包裹钢滴的夹杂物.  相似文献   

18.
对国内一钢厂EAF→LF→VD→CC工艺生产的高品质GCr15轴承钢进行系统取样,针对DS类非金属夹杂物随机性强的特点,利用能够进行大面积试样检测的ASPEX自动扫描电镜分析统计钢中非金属夹杂物的成分、尺寸、数量等信息。研究发现:GCr15轴承钢冶炼过程中非金属夹杂物主要为MgO- Al2 O3- CaO复合夹杂物和MnS,同时有少量的SiO2- Al2 O3和MgO-Al2 O3复合夹杂物;夹杂物尺寸主要集中在3~8μm,并有少量DS类夹杂物出现且尺寸范围波动很大,最大可以达70μm以上,形貌为圆形或近似圆形;VD有较强的去除夹杂物功能,经过VD真空精炼,夹杂物中CaO含量有增加趋势;吊包至铸坯过程,夹杂物成分向Al2 O3含量增多的区域移动,最终轴承钢铸坯中夹杂物成分位于高Al2 O3含量(≥80%),少量MgO (<20%)和低CaO(<5%)的区域;DS夹杂物的生成和去除具有较强的随机性。  相似文献   

19.
通过钢液与夹杂物间的热力学平衡计算,对Al脱氧弹簧钢钙处理过程中铝酸钙硫化物的析出行为进行热力学分析,探讨[Al]、[Ca]、[S]浓度和钢液温度对Al2O3夹杂物变性行为的影响。结果表明,1600℃钢液温度下,w[Al]=0.03%时,Al2O3生成为低熔点12CaO·7Al2O3时的w[Ca]0.0034%,其值随钢液温度降低而减小,随铝含量增大而增大。CaS析出时的临界钙含量随钢液温度降低而显著减小,当w[S]0.005%时,w[Ca]随w[S]变化而显著变化。要使钢中夹杂物控制在低熔点12CaO·7Al2O3区域,需控制w[S]0.0037%,该值随钢液温度的降低或铝含量的增大而减小。  相似文献   

20.
利用热力学软件FactSage 7.0计算1873K下四元渣系CaO-SiO_2-Al_2O_3-MgO与60Si2Mn弹簧钢平衡时的等氧线,通过渣-钢高温平衡试验,测定了不同精炼渣方案下钢中溶解氧和全氧含量,并对钢中非金属夹杂物的形貌、数量和尺寸分布进行表征。结果表明,1873K温度下,w(MgO)=6%且w(CaO)/w(Al_2O_3)=1时,钢液中溶解[O]及T[O]含量随着渣中w(SiO_2)的增大而增加,而当w(SiO_2)=30%时,随着w(CaO)/w(Al_2O_3)的增加,钢液中溶解[O]及T[O]含量分别呈降低和升高的趋势,这与钢液中SiO_2的活度有关;不同精炼渣方案得到的钢中,尺寸小于10μm的夹杂物所占比例超过87%,尺寸小于4μm的夹杂物所占比例超过50%,且单位面积夹杂物的数量与钢中T[O]含量的变化趋势一致。与试验结果对比可知,利用热力学软件FactSage 7.0计算钢中溶解氧含量是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号