首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Royant A  Edman K  Ursby T  Pebay-Peyroula E  Landau EM  Neutze R 《Nature》2000,406(6796):645-648
A wide variety of mechanisms are used to generate a proton-motive potential across cell membranes, a function lying at the heart of bioenergetics. Bacteriorhodopsin, the simplest known proton pump, provides a paradigm for understanding this process. Here we report, at 2.1 A resolution, the structural changes in bacteriorhodopsin immediately preceding the primary proton transfer event in its photocycle. The early structural rearrangements propagate from the protein's core towards the extracellular surface, disrupting the network of hydrogen-bonded water molecules that stabilizes helix C in the ground state. Concomitantly, a bend of this helix enables the negatively charged primary proton acceptor, Asp 85, to approach closer to the positively charged primary proton donor, the Schiff base. The primary proton transfer event would then neutralize these two groups, cancelling their electrostatic attraction and facilitating a relaxation of helix C to a less strained geometry. Reprotonation of the Schiff base by Asp 85 would thereby be impeded, ensuring vectorial proton transport. Structural rearrangements also occur near the protein's surface, aiding proton release to the extracellular medium.  相似文献   

2.
J B Udgaonkar  R L Baldwin 《Nature》1988,335(6192):694-699
The presence of an early intermediate on the folding pathway of ribonuclease A has been demonstrated by a study of the exchange reaction between the backbone amide protons in the folding protein and solvent protons using rapid mixing techniques. A structural analysis of the intermediate by two-dimensional 1H-NMR is consistent with the framework model of protein folding in which stable secondary structure first forms the framework necessary for the subsequent formation of the complete tertiary structure.  相似文献   

3.
Qian B  Raman S  Das R  Bradley P  McCoy AJ  Read RJ  Baker D 《Nature》2007,450(7167):259-264
The energy-based refinement of low-resolution protein structure models to atomic-level accuracy is a major challenge for computational structural biology. Here we describe a new approach to refining protein structure models that focuses sampling in regions most likely to contain errors while allowing the whole structure to relax in a physically realistic all-atom force field. In applications to models produced using nuclear magnetic resonance data and to comparative models based on distant structural homologues, the method can significantly improve the accuracy of the structures in terms of both the backbone conformations and the placement of core side chains. Furthermore, the resulting models satisfy a particularly stringent test: they provide significantly better solutions to the X-ray crystallographic phase problem in molecular replacement trials. Finally, we show that all-atom refinement can produce de novo protein structure predictions that reach the high accuracy required for molecular replacement without any experimental phase information and in the absence of templates suitable for molecular replacement from the Protein Data Bank. These results suggest that the combination of high-resolution structure prediction with state-of-the-art phasing tools may be unexpectedly powerful in phasing crystallographic data for which molecular replacement is hindered by the absence of sufficiently accurate previous models.  相似文献   

4.
The X-ray crystal structure of the molecular complex of penicillin G with a deacylation-defective mutant of the RTEM-1 beta-lactamase from Escherichia coli shows how these antibiotics are recognized and destroyed. Penicillin G is covalently bound to Ser 70 0 gamma as an acyl-enzyme intermediate. The deduced catalytic mechanism uses Ser 70 0 gamma as the attacking nucleophile during acylation. Lys 73 N zeta acts as a general base in abstracting a proton from Ser 70 and transferring it to the thiazolidine ring nitrogen atom via Ser 130 0 gamma. Deacylation is accomplished by nucleophilic attack on the penicilloyl carbonyl carbon by a water molecule assisted by the general base, Glu 166.  相似文献   

5.
6.
Pentameric ligand-gated ion channels from the Cys-loop family mediate fast chemo-electrical transduction, but the mechanisms of ion permeation and gating of these membrane proteins remain elusive. Here we present the X-ray structure at 2.9 A resolution of the bacterial Gloeobacter violaceus pentameric ligand-gated ion channel homologue (GLIC) at pH 4.6 in an apparently open conformation. This cationic channel is known to be permanently activated by protons. The structure is arranged as a funnel-shaped transmembrane pore widely open on the outer side and lined by hydrophobic residues. On the inner side, a 5 A constriction matches with rings of hydrophilic residues that are likely to contribute to the ionic selectivity. Structural comparison with ELIC, a bacterial homologue from Erwinia chrysanthemi solved in a presumed closed conformation, shows a wider pore where the narrow hydrophobic constriction found in ELIC is removed. Comparative analysis of GLIC and ELIC reveals, in concert, a rotation of each extracellular beta-sandwich domain as a rigid body, interface rearrangements, and a reorganization of the transmembrane domain, involving a tilt of the M2 and M3 alpha-helices away from the pore axis. These data are consistent with a model of pore opening based on both quaternary twist and tertiary deformation.  相似文献   

7.
Oldham ML  Khare D  Quiocho FA  Davidson AL  Chen J 《Nature》2007,450(7169):515-521
The maltose uptake system of Escherichia coli is a well-characterized member of the ATP-binding cassette transporter superfamily. Here we present the 2.8-A crystal structure of the intact maltose transporter in complex with the maltose-binding protein, maltose and ATP. This structure, stabilized by a mutation that prevents ATP hydrolysis, captures the ATP-binding cassette dimer in a closed, ATP-bound conformation. Maltose is occluded within a solvent-filled cavity at the interface of the two transmembrane subunits, about halfway into the lipid bilayer. The binding protein docks onto the entrance of the cavity in an open conformation and serves as a cap to ensure unidirectional translocation of the sugar molecule. These results provide direct evidence for a concerted mechanism of transport in which solute is transferred from the binding protein to the transmembrane subunits when the cassette dimer closes to hydrolyse ATP.  相似文献   

8.
Mortuza GB  Haire LF  Stevens A  Smerdon SJ  Stoye JP  Taylor IA 《Nature》2004,431(7007):481-485
Retroviruses are the aetiological agents of a range of human diseases including AIDS and T-cell leukaemias. They follow complex life cycles, which are still only partly understood at the molecular level. Maturation of newly formed retroviral particles is an essential step in production of infectious virions, and requires proteolytic cleavage of Gag polyproteins in the immature particle to form the matrix, capsid and nucleocapsid proteins present in the mature virion. Capsid proteins associate to form a dense viral core that may be spherical, cylindrical or conical depending on the genus of the virus. Nonetheless, these assemblies all appear to be composed of a lattice formed from hexagonal rings, each containing six capsid monomers. Here, we describe the X-ray structure of an individual hexagonal assembly from N-tropic murine leukaemia virus (N-MLV). The interface between capsid monomers is generally polar, consistent with weak interactions within the hexamer. Similar architectures are probably crucial for the regulation of capsid assembly and disassembly in all retroviruses. Together, these observations provide new insights into retroviral uncoating and how cellular restriction factors may interfere with viral replication.  相似文献   

9.
H Wang  M Tessier-Lavigne 《Nature》1999,401(6755):765-769
During development, neurons extend axons to their targets, then become dependent for their survival on trophic substances secreted by their target cells. Competition for limiting amounts of these substances is thought to account for much of the extensive naturally-occurring cell death that is seen throughout the nervous system. Here we show that spinal commissural neurons, a group of long projection neurons in the central nervous system (CNS), are also dependent for their survival on trophic support from one of their intermediate targets, the floor plate of the spinal cord. This dependence occurs during a several-day-long period when their axons extend along the floor plate, following which they develop additional trophic requirements. A dependence of neurons on trophic support derived en passant from their intermediate axonal targets provides a mechanism for rapidly eliminating misprojecting neurons, which may help to prevent the formation of aberrant neuronal circuits during the development of the nervous system.  相似文献   

10.
11.
12.
High-resolution structure of a DNA helix containing mismatched base pairs   总被引:3,自引:0,他引:3  
T Brown  O Kennard  G Kneale  D Rabinovich 《Nature》1985,315(6020):604-606
The concept of complementary base pairing, integral to the double-helical structure of DNA, provides an effective and elegant mechanism for the faithful transmission of genetic information. Implicit in this model, however, is the potential for incorporating non-complementary base pairs (mismatches) during replication or subsequently, for example, during genetic recombination. As such errors are usually damaging to the organism, they are generally detected and repaired. Occasionally, however, the propagation of erroneous copies of the genome confers a selective advantage, leading to genetic variation and evolutionary change. An understanding of the nature of base-pair mismatches at a molecular level, and the effect of incorporation of such errors on the secondary structure of DNA is thus of fundamental importance. We now report the first single-crystal X-ray analysis of a DNA fragment, d(GGGGCTCC), which contains two non-complementary G X T base pairs, and discuss the implications of the results for the in vivo recognition of base-pair mismatches.  相似文献   

13.
14.
X-ray structure of a protein-conducting channel   总被引:1,自引:0,他引:1  
A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The alpha-subunit has two linked halves, transmembrane segments 1-5 and 6-10, clamped together by the gamma-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an 'hourglass' with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.  相似文献   

15.
Lizak C  Gerber S  Numao S  Aebi M  Locher KP 《Nature》2011,474(7351):350-355
Asparagine-linked glycosylation is a post-translational modification of proteins containing the conserved sequence motif Asn-X-Ser/Thr. The attachment of oligosaccharides is implicated in diverse processes such as protein folding and quality control, organism development or host-pathogen interactions. The reaction is catalysed by oligosaccharyltransferase (OST), a membrane protein complex located in the endoplasmic reticulum. The central, catalytic enzyme of OST is the STT3 subunit, which has homologues in bacteria and archaea. Here we report the X-ray structure of a bacterial OST, the PglB protein of Campylobacter lari, in complex with an acceptor peptide. The structure defines the fold of STT3 proteins and provides insight into glycosylation sequon recognition and amide nitrogen activation, both of which are prerequisites for the formation of the N-glycosidic linkage. We also identified and validated catalytically important, acidic amino acid residues. Our results provide the molecular basis for understanding the mechanism of N-linked glycosylation.  相似文献   

16.
Borgani S  Guzzo L 《Nature》2001,409(6816):39-45
Clusters of galaxies are visible tracers of the network of matter in the Universe, marking the high-density regions where filaments of dark matter join together. When observed at X-ray wavelengths these clusters shine like cosmic lighthouses, as a consequence of the hot gas trapped within their gravitational potential wells. The X-ray emission is linked directly to the total mass of a cluster, and so can be used to investigate the mass distribution for a sizeable fraction of the Universe. The picture that has emerged from recent studies is remarkably consistent with the predictions for a low-density Universe dominated by cold dark matter.  相似文献   

17.
18.
Forced by transient solar activities since 7 ka,the thermal structures of the Pacific upper water at boreal winter are featured by an enhanced response of 3-dimensional Western Pacific Warm Pool(WPWP) in an Earth system model of Intermediate Complexity at centennial scales.During solar maximum periods,the magnitude of surface ocean temperature variations is 30% larger in the western tropical Pacific than in the Ni o3 region,while at subsurface,it is 40% larger in the subtropical North Pacific than in the western Equatorial Pacific.They compromise stronger zonal and meridional thermal gradients in surface and subsurface Pacific respectively which are both linearly responded to solar forcing at centennial periods.The surface gradient is most sensitive at 208-year period while the subsurface gradient shows more significance at periods longer than 208-year.Also noteworthy are two differences:(1) the phase lags at these periods of surface gradient are slightly smaller than that of subsurface;(2) the 148-year and 102-year periods in surface gradient are lost in subsurface gradient.These modeled features preliminary confirm the centennial fluctuations of WPWP in paleo-proxies and a potential solar forcing during the Holocene.  相似文献   

19.
T Kobayashi  T Saito  H Ohtani 《Nature》2001,414(6863):531-534
Real-time investigations of the rearrangement of bonds during chemical transformations require femtosecond temporal resolution, so that the atomic vibrations within the reacting molecules can be observed. Following the development of lasers capable of emitting ultrashort laser flashes on this timescale, chemical reactions involving relatively simple molecules have been monitored in detail, revealing the transient existence of intermediate species as reactants are transformed into products. Here we report the direct observation of nuclear motion in a complex biological system, the retinal chromophore of bacteriorhodopsin (bR568), as it undergoes the trans-cis photoisomerization that is fundamental to the vision process. By using visible-light pulses of less than 5 femtosecond in duration, we are able to monitor changes in the vibrational spectra of the transition state and thus show that despite photoexcitation of the anti-bonding molecular orbital involved, isomerization does not occur instantly, but involves transient formation of a so-called 'tumbling state'. Our observations thus agree with growing experimental and ab initio evidence for a three-state photoisomerization model and firmly discount the initially suggested two-state model for this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号