首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
右n-C2环     
给了右n-C2环的概念.证明了如下结果:(1)环R是n-C2环当且仅当n∈Z+,对于a∈R,若r(an)=r(e),其中e2=e∈R,则e∈Ran;(2)若R是右n-C2环,则Zr(R)J(R);(3)若R是一个环,则下列条件等价:(i)R是n-正则环;(ii)R是右n-C2环和右n-Gpp环.  相似文献   

2.
本文讨论弱本原环的稠密性问题,主要结果是: 环R是弱本原的当且仅当存在(D,V,M)使得 (1)如果x,y≠0∈V,则存在r,s∈R使xr=ys≠0。 (2)如果x_1,x_2∈M是D上线性无关元,则存在非零元r,s∈R使x_1r=x_2s,x_2r=x_1s且S|Dx_i是自同构,i=1,2。  相似文献   

3.
利用ACS环、pp环、弱连续环等给出正则环的若干刻画:1)R是正则环当且仅当R是左C2环和左pp环当且仅当R是左ACS环、在C2环和左非奇异环;2)R是强正则环当且仅当对每个α∈R,有ι(α)的R的理想,且奇异单右R-模是平坦模当且仅当R是右SF环,且对每个α∈R,有ι(α)是R的理想。  相似文献   

4.
研究了small-内射模和small-内射环的性质,证明了若R是约化的左small-内射环,记S=eRe,e~2=e∈R,则S是约化的左JP-内射环.用单奇异左(右)R-模的small-内射性刻画了半本原环,证明了R是半本原环当且仅当任意单奇异左(右)R-模是small-内射的.得到了在R是半局部环的条件下,以下叙述等价:(1)R是半单环;(2)R是正则环;(3)任意单奇异左(右)R-模是small-内射的;(4)R是半本原环.通过对环的极大左(右)零化子的研究,分别得出了若0≠a∈R,l(a)是R的极大左零化子,则l(a)=l(a~2);若0≠a∈R,r(a)是极大右零化子,则对任意0≠at∈R,有l(a)=l(at),并证得了若R是左small-内射环,且对0≠a∈J,l(a)(r(a))是R的极大左(右)零化子,则a是非零幂零元.  相似文献   

5.
借助于某种换位子等式,给出SZC环的定义,研究SZC环的一些性质.主要证明了如下结果:①SZC环是CN环和ZC环;②R为强正则环当且仅当R为SZC环和正则环;③设R为SZC环且C(R)≠R,若R为素环,则R为交换环;④R为Abel环当且仅当对任意e∈E(R),任意x∈R,存在n=n(e,x)>1,z=ze,x∈R,使得ex-xe=(ex-xe)nz;⑤R为CN环当且仅当对任意x∈N(R),任意y∈R,存在n=n(x,y)>1,z=zx,y∈N(R),使得xy-yx=(xy-yx)nz.  相似文献   

6.
定义了weakly almost clean环。交换环R叫做weakly almost clean环,如果对于任意一个元素 x ∈ R可以写成 x = r+ e或x = r-e的形式,其中r∈ reg(R)且e∈ Id(R)。首先,对于环Ri的非空集合{Ri},证明了直和R=∏ i∈ IRi为weakly almost clean当且仅当存在 m ∈ I使Rm为weakly almost clean且对所有的n≠ m ,Rn为almost clean 。然后,设R是一个环且 M为一个R‐模,得到了R和M的平凡扩张R(M)为weakly almost clean当且仅当每个 x∈ R可以写成x= r+e或x= r-e的形式,其中 r∈ R-(Z(R)∪ Z(M))且e∈ Id(R)。进而推广了almost clean环的相应结果。  相似文献   

7.
证明了如下结果:①环R是强左DS环当且仅当R是左DS环和强左极小Abel环;②设R为强左DS环,e2=e∈R为弱角幂等元,则eRe也是强左DS环;③R是强左极小Abel环当且仅当对每个e∈MEl(R),任意的a,b∈R,eab=eaeb;④强左极小Abel环的次直积也是强左极小Abel环;⑤R是强左DS环当且仅当对R的每个左极小元k,存在e∈MEl(R),使得Rk=l(1-e),l(k)=R(1-e);⑥R是左极小Abel环当且仅当对R的每个左极小元k,当k2=0时,对每个a∈R,总有Rk+R(ka-1)=R.  相似文献   

8.
拟Abel环   总被引:2,自引:0,他引:2  
设R是一个环,M是双R-模.若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件: e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.  相似文献   

9.
针对交换环R中的理想I是可消理想的定义,提出在(冯诺依曼)正则算术环中建立可消理想的一个等价刻画;通过映射φ:Lat(R)→Lat(I):对于任意的A∈Lat(R),φ(A)=I∩A,寻找环R和理想I的进一步关系,得出对于任意的0≠e∈Idem(R),存在0≠f∈Idem(I)使得Re=Rf;从而给出完全算术环中可消理想的等价条件:R是一个完全算术环且J(R)=0,那么I是一个可消理想当且仅当对于任意e∈Idem(R),存在f∈Idem(I)使得Re=Rf.  相似文献   

10.
设σ是环R的一个自同构 .证明了如果R是σ 右p q Baer环 ,并且Sσl 的任意元e满足 :对任意的r∈R及任意非负整数i,erσ-i(e) =rσ-i(e) ;对任意的r∈R ,若re=0 ,则rσ(e) =0 ,那么环R的斜多项式扩张R[x ,σ]是右p q Baer环  相似文献   

11.
直接有限环     
证明了如下结果:1)环R是直接有限环当且仅当每个右R-满射f:R→R是单射;2)若R是右C2环,则R是直接有限环当且仅当每个右R-单射f:R→R是满射当且仅当R/J(R)是直接有限环;3)设R是左半A-bel环,则R是直接有限环;4)设R,S是两个环,RVS是(R,S)双模,则C=RV  相似文献   

12.
ML-环     
称环R为左ML-环,若环R中任意元a满足a或1-a是左Morphic元.显然,左Morphic环及局部环皆为左ML-环,但反之不然.设{Ri}i∈I是环族.得到的∏i∈IRi是左ML-环当且仅当存在i0∈I使得Ri0是左ML-环且对任意i∈I-{i0},Ri都是左Morphic环.此外,若正整数n≥2且n=∏si=1prii是n的标准因子分解,则Zn∝Zn是左ML-环当且仅当至多一个i使得ri>1当且仅当Zn是VNL-环.同时还构造了一些例子来说明问题.  相似文献   

13.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(xn)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

14.
本文引入了弱M-拟Armendariz环的概念,其中M是幺半群,它是M-拟Armendariz环和弱M-Armendariz环的一般推广.本文中研究了这类环的相关性质.我们证明了(1)若I是环R的半交换的理想,使得R/I是弱M-拟Armendariz环的,则R是弱M-拟Armendariz环,其中M是严格的完全序幺半群;(2)一个有限生成的Abelian群G是无挠的当且仅当存在一个环R使得R是弱G-拟Armendariz环.  相似文献   

15.
设α是环R的自同态。称环R为右α-可逆环,如果对任意的a,b∈R若ab=0,则bα(a)=0.本文讨论了α-可逆环,α-刚性环,可逆环和弱α-Skew Armendariz环的关系。设R是可逆环和右α-可逆环,证明了:(1)R是弱α-Skew Armendariz环;(2)对任意的正整数n, R[x] /(x^n)是弱α-Skew Armendariz环;(3)若αt=1R,则R[x;α]是弱Armendariz环.  相似文献   

16.
Morphic环的一些性质   总被引:2,自引:0,他引:2  
文章研究了M orphic环的一些性质,证明了:(1)约化的Morphic环是左(右)遗传的;(2)约化环R是Morphic环■M∈MR,M是平坦模;(3)约化环R是Morphic环■每个循环左R-模是GP-内射的R是左PP环和左GP-内射环。  相似文献   

17.
EIFP环     
给出EIFP环的定义,研究EIFP环的一些性质.主要证明了如下结果:①设R为EIFP环,则对每个e∈E(R),有eR(1-e)■J(R);②设R为quasi-normal环,e∈E(R),则R是EIFP环当且仅当eRe及(1-e)R(1-e)都是EIFP环;③R是Abel环当且仅当R是EIFP环和强左幂等自反环;④R是强正则环当且仅当R是von Neumann正则环和EIFP环;⑤R是约化环当且仅当R是n-正则环和EIFP环;⑥EIFP的exchange环有稳定域1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号