首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cratonic destruction or lithospheric thinning beneath North China makes it as one of the most ideal areas for the studying on the formation and evolution of continent. However, the mechanism, time, range and dynamic setting of the destruction, even the lithospheric status before the destruction, are contentious. The comparison among mantle xenoliths in the volcanic rocks from different captured times (e.g. Paleozoic, Mesozoic and Cenozoic) and locations (e.g. intra-plate or its rim, the translithospheric Tanlu fault or the North-South Gravity Line), and peridotitic massifs within the Sulu-Dabie ultrahigh-pressure metamorphism belt along the southern margin of the North China Craton, indicates that (1) the cratonic lithosphere is heterogeneous in structure and composition, and contains mantle weak zones; and (2) the Mesozoic-Cenozoic lithospheric thinning process is complex, including lateral spreading of lithosphere, interaction between melt and peridotite, non-even asthenospheric erosion (huge lithospheric thinning), and the limited lithospheric accretion and thus thickening, which resulted in the final replacement of the refractory cratonic lithosphere by juvenile fertile mantle. In early Mesozoic, the integrity of the North China Craton was interrupted, even destroyed by subduction and collision of the Yangtze block. The mantle wedge of the North China Craton was also metasomatized and modified by melt/fluids revealed from the subducted Yangtze continent. Lithospheric mantle extension and tectonic intrusion of the North China Craton also occurred, accompanied by the asthenospheric upwelling that due to the detachement of the subducted Yangtze continent (orogenic root). During early Cretaceous-early Tertiary, the huge thinning of lithosphere was triggered by the upwelling asthenosphere due to the subduction of the Pacific plate. Since late Tertiary, the cooling of the upwelling asthenosphere resulted in the replacement of the mantle in existence by the newly accreted lithosphere, accompanied with a little thickness in lithosphere and thus finally achieved the lithospheric thinning as a whole. The translithospheric faults, such as the Tanlu fault, play excellent channels for asthenospheric upwelling. Meanwhile, the channels in lithosphere are usually irregular, which resulted in different eruption times of magma. Peridotite xenolith in the basalts erupted at 100 Ma is mainly fertile, indicating such a fact, that is, the mantle replacement occurred before the eruption (e.g. 125--100 Ma) beneath the eastern part of the North China Craton.  相似文献   

2.
This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subduction of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified lithospheric mantle. At the same time or subsequently lithospheric extension and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of per- idotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times.  相似文献   

3.
A systematic Sm-Nd isotopic study was carried out for sediments and metasediments of different ages from Mesoproterozoic to early Mesozoic era in southwestern Fujian, Eastern Nanling Range. The results show that Nd model age (tDM) and εNd(t) value of most sediments are closely similar to those of Paleoproterozoic Mayuan Group, indicating that they may mainly be the recycling product of Paleoproterozoic crustal materials. However, the Nd model age significantly decreases with a corresponding increase in the εNd(t) value at Neoproterozoic (ca. 0.8-0.7 Ga) and Late Paleozoic (ca. 0.25 Ga), respectively. This is manifested by prominent vales and apexes on the diagrams of tDM VS. tStr. (stratum age) and εNd(t) VS. tstr. The decrease in tDM and the increase in εNd(t) are explained as a result of the significant incorporation of juvenile crustal materials that originated from depleted mantle due to strong lithospheric extension during both periods. It appears that tectonic magmatism in the Neoproterozoic and the Late Paleozoic is of prominent importance in affecting the geochemical nature of sediments in South China.  相似文献   

4.
Growth and reworking of cratonic lithosphere   总被引:4,自引:0,他引:4  
To study the thinning of cratonic lithosphere in North China has been the hot subject of basic research in the fields of solid earth science in China. This paper presents an overview on the formation and evolution of continental crust, and outlines the mechanisms of forming the lithospheric mantle. It is suggested that the thinning of cratonic lithosphere principally proceeds in two ways, one by subduction erosion (e.g., North China), and the other by a combination of subduction erosion and underplating degistion (e.g., Yangtze).  相似文献   

5.
Systematical studies of post-collisional igneous rocks in the Dabie orogen suggest that the thickened mafic lower crust of the oro- gen was partially melted to form low-Mg# adakitic rocks at 143-131 Ma. Delamination and foundering of the thickened mafic lower crust occurred at 130 Ma, which caused the mantle upwelling and following mafic and granitic magmatic intrusions. Mig- matite in the North Dabie zone, coeval with the formation of low-Mg# adakitic intrusions in the Dabie orogen, was formed by partial melting of exhumed ultrahigh-pressure metamorphic rocks at middle crustal level. This paper argues that the partial melting of thickened lower and middle crust before mountain-root collapse needs lithospheric thinning. Based on the geothermal gradient of 6.6~C/km for lithospheric mantle and initial partial melting temperature of ~1000~C for the lower mafic crust, it can be estimated that the thickness of lithospheric mantle beneath thickened lower crust has been thinned to 〈45 km when the thickened lower crust was melting. Thus, a two-stage model for mountain-root removal is proposed. First, the lithospheric mantle keel was partially removal by mantle convection at 145 Ma. Loss of the lower lithosphere would increase heat flow into the base of the crust and would cause middle-lower crustal melting. Second, partial melting of the thickened lower crust has weakened the lower crust and increased its gravity instability, thus triggering delamination and foundering of the thickened mafic lower crust or mountain-root collapse. Therefore, convective removal and delamination of the thickened lower crust as two mechanisms of lithospheric thin- ning are related to causality.  相似文献   

6.
Hf isotopes of zircon megacrysts from the Cenozoic basalts in eastern China   总被引:6,自引:0,他引:6  
Cenozoic basalts are widely distributed in eastern China, and some of them contain zircon megacrysts which are considered to be constituent mineral of the subcontinental lithospheric mantle (SCLM) and petrogenetically related to mantle metasomatism induced by addition of crustal materials. Using the Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS), zircon megacrysts from the Cenozoic basalts at Changle in Shandong, Mingxi in Fujian, and Penglai in Hainan provinces have been used for Hf isotopic analyses. The data indicate that there is no significant deviation for the different zircon grains in each locale, except those from Penglai. The obtained ^176Hf /^177Hf ratios are 0.28302- 0.28308 for Changle, 0.28297-0.28300 for Mingxi, and 0.28288-0.28293 for Penglai, with corresponding ear values of 8.7-10.8, 7.0-7.9, and 3.9-5.7, respectively. These data display that there existed some regional heterogeneity, but the Hf model ages clustere in the Phanerozoic. Therefore, it is inferred that metasomatism of the lithospheric mantle beneath eastern China took place in the Phanerozoic, most probably in the Mesozoic-Cenozoic. However, the formation time of the iithospheric mantle is not clearly constrained based on the present Hf isotopic data.  相似文献   

7.
This study presents noble gaseous data of the corundum megacrysts from the Cenozoic basalts in Changle, Shandong Province, eastern China. It is known that no noble gaseous data of corundum megacryst have been documented before. The 3He/4He ratios (1.13-7.37 Ra) of the corundums from Changle vary from atmosphere to MORB values; the 20Ne/22Ne (9.67-10.75) and 21Ne/22Ne (0.0280-0.0372) data define two linear trends on Ne three-isotope diagram, respectively, along the MFL and the correlation line between atmosphere and MORB; the 38Ar/36Ar (0.177-0.194) ratios, the 40Ar/36Ar (280.9 -404.2) ratios and the 128-136Xe/132Xe ration with obvious 129Xe excess are generally higher than at-mospheric component, but the 40Ar/36Ar ratios are much closer to atomospheric ratio. The isotopic compositions of noble gases (particularly for He and Ar) of the corundums are similar to those of py-roxene, anorthoclase megacrysts, and mantle-derived xenoliths from this area, and those of man-tle-derived xenoliths from several areas in eastern China. Therefore, the noble gases trapped in the corundums probably are from mantle source, representing a ‘mixed fluid' produced by the interaction between the lithospheric mantle and fluids releasing from the convective plate. Both the noble gas isotopic compositions and the oxygen isotopic compositions of the solid corundums are not the characteristics of crustal source. These suggest that the corundums crystallized from mantle-derived magmas with minimal crustal contamination.  相似文献   

8.
It is undebated fact that the lithospheric mantle beneath eastern China was considerably thinned during the Mesozoic time. However, it has no adequate evidence for the exact timing when the lithosphere thinning started. The Liaodong Peninsula is located in the eastern segment of the North China Craton and is one of the important domains to explore the event of lithosphere thinning. SHRIMP U-Pb zircon dating and geochemical study were carried out for the lamprophyre dike swarm that intruded into the magnesite ore-beds in the Dashiqiao Formation of Paleoproterozoic Liaohe Group at the Huaziyu magnesite ore district, Liaodong Peninsula. The results indicate that these lamprophyre dikes were intruded in late Jurassic (155±4 Ma) and show some geochemical characteristics of potassic magmas. It is now accepted that the lithosphere thinning took place in the late Mesozoic, and the peak thinning stage occurred in early Cretaceous (130-120 Ma). Considering the potassic mafic magmatism marking the onset of the lithospheric thinning, we therefore suggest that the studied late Jurassic potassic lamprophyre dike swarm could imply that the late Jurassic is the time that lithosphere thinning started.  相似文献   

9.
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific. Its northern part has the features of a passive continental margin. The studies of deep crustal structure in this area are very important for understanding the tectonic nature, evolution history, basin formation of the northern margin, and the origin of the SCS. In the past decades, the deep seismic experiments of crustal studies in the northern SCS have gone through three stages, namely the sonobuoy, two-ship Expanding Spread Profile (ESP), and Ocean Bottom Hydrophone/Seismometer (OBH/OBS). Along the continental slope, the sonobuoy experiments provided useful information about the velocity structure of the upper crust, while the ESP data recorded for the first time the seismic signals from deep crustal structure and Moho interface. And the OBH/OBS profiles revealed the crustal structure in much greater detail. This paper first gives a brief historical review of these deep seismic experiments and studies, then a summary of the latest progress and important research results. The remaining problems and suggestions for further research work are presented as conclusive remarks.  相似文献   

10.
The Sumatra-Andaman earthquake on December 26, 2004 is the first well recorded gigantic earthquake (moment magnitude MW 9.3) by modern broadband seismic and Global Positioning System networks. The rich seismic and geodetic recordings have documented unprecedented details about the earthquake rupture, coseismic and postseismic deformations. This is a report of detailed images of the rupture process using the first-arriving compressional waves recorded by the China National Digital Seismic Network (CNDSN). An improved imaging condition was employed to account for the sparse distribution of the CNDSN stations. The resulting images are consistent with the major rupture features reported by previous seismic and geodetic studies. It is found that the earthquake rupture initiated at offshore of northwestern Sumatra and propagated in the north northwest direction at a speed of 2.7 ± 0.2 km/s. The rupture continued for at least 420 s and extended about 1200-1300 km along the Andaman trough with two bursts of seismic energy.  相似文献   

11.
Two-pyroxene granulite and clinopyroxene granulite xenoliths have been recently discovered in the Late Paleogene toNeogene volcanic rocks (with ages in the range of 4.27~44.60 Ma) that outcropped in Hoh Xil, central Tibetan plateau. Based on theelectron microprobe analysis data, the xenoliths provide constraints for the formation equilibrium temperatures of the two-pyroxene gran-ulite being about 783 to 818℃ as determined by two-pyroxene thermometry and the forming pressure of the clinopyroxene granulite beingabout 0.845 to 0.858 GPa that is equivalent to 27.9~28.3 km depth respectively. It indicates that these granulite xenoliths represent thesamples from the middle part of the thickened Tibetan crust. This discovery is important and significant to making further discussion onthe component and thermal regime of the deep crust of the Tibetan plateau.  相似文献   

12.
The granulite xenoliths are first found in Yingfengling pyroclastic rocks of Leizhou region, Guangdong Province. Of them high_pressure garnet granulite xenolith found is very sparse in China. Garnet granulite is different from pyroxene granulite in mineral assemblage and composition. \%P_T\% calculation shows that garnet granulite was formed at 1 130-1 160℃and 1.4-1.7 GPa, and pyriclasite at about 800℃and 0.65-0.80 GPa. High xenolith_derived paleogeotherm indicates Cenozoic rifting in Leizhou area. Granulites with varied mineral assemblages were formed at different depths by the metamorphism of the underplated basaltic melt.  相似文献   

13.
根据对华北克拉通汉诺坝和女山两个捕虏体产地的麻粒岩和橄榄岩的FTIR实验测定,分析讨论了大陆深部岩石圈内水含量和分布上的一些显著特点.结果表明,大陆下地壳和岩石圈内矿物的水含量无论在横向还是垂向分布上都是明显不均一的,造成这些不均一性的机制可能复杂多样.  相似文献   

14.
In Tuoyun area of southwestern Tianshan, mantle and lower crust xenoliths are present in the volcanic rocks with ages of 101–123 Ma. Mantle xenoliths include mineral megacrysts such as kaersutite and pargasite, feldspar, biotite, and rare pyroxene and rock fragments such as perodotite, pyroxenite, amphibolite, and rare glimmerite. Lower crust xeno-liths are mainly banded and massive granulite. The volcanic rocks were produced by within-plate magmatism. Occurrence of hydrous and volatile mineral megacrysts, amphibolite, and some pyroxenite containing hydrous and volatile minerals indicates that mantle metasomatism was intense. Undoubtedly, this discovery is very important to understanding of the crust-mantle structure and geodynamic background in depth in southwestern Tianshan and geological correlation with adjacent regions.  相似文献   

15.
内蒙古四子王旗早白垩世深源捕虏体的发现及意义   总被引:5,自引:1,他引:4  
内蒙古四子王旗地区地处华北板块北缘,与西伯利亚板块的接合部,其早白垩世橄榄玄武岩中发现大量下地壳麻粒岩捕虏体,并可见辉石、长石捕虏晶。寄主岩石K-Ar同位素年龄在108.6~128.4 Ma之间。四子王旗地区下地壳捕虏体的发现对研究华北板块北缘中生代构造格局转化过程中深部壳幔的相互作用及物质成分的演变具有重要意义,为华北板块中生代末岩石圈拆沉事件提供了证据。  相似文献   

16.
Cenozoic basalt-borne mafic granulite-facies plagioclase pyroxenite and eclogite-facies garnet pyroxenite xenoliths from the Hannuoba, as well as nearby Archean terrain granulites, are selected for the experimental study on the P wave velocity at high temperature and high pressure in order to reveal the present-day compositional features for the lower crust and crust-mantle transitional zone. Results show that mafic xenoliths have high Vp (7.0~8.0 km/s), in contrast, the Archean terrain granulites have low Vp (<7.0 km/s). High Vp mafic xenoliths can represent the present-day compositional features for the lower crust and crust-mantle transitional zone beneath the Hannuoba. This provides new evidence for the crust vertical growth and the formation of the crust-mantle transitional zone resulting from the magma underplating. Low Vp Archean granulite still remains the characteristics of the early lower crust.  相似文献   

17.
Sr, Nd and Pb isotopic characteristics of granulite and pyroxenite xenoliths from Han-nuoba Basalts in five-dimensional space are studied. Combined with the distribution of xenoliths, it is suggested that the isotopic relationship between various xenoliths can be well explained by the processes of delamination.  相似文献   

18.
Studies of mantle xenoliths hosted in both the Cenozoic alkali basalt and the Early Paleozoic kimberlite suggest that part of the subcontinental lithosphere as thick as more than 100 km has been lost from the Early Paleozoic to Cenozoic[1—8]. Neither the scale and mechanism nor the accurate timing of the lithospheric thinning has been precisely constrained[7-12]. One of the reasons for this is that there are only a few Mesozoic basalts cropped out, especially, few containing mantle-derived …  相似文献   

19.
Neutron activation analysis after preconcentration of nickel sulfide fire assay was used in measurement of Ru, Ph, Pd, Os, Ir, Pt (i.e. PGE elements) and Au concentrations for basalt, mantle and granulite xenoliths in Hannuoba. The chondrite- and primitive mantle-normalized PGE patterns generally exhibit flat (for Iherzolite), negative slope (for harzburgite), and positive slope (for basic granulite and basalt). In addition, strong Ir negative anomaly occurs in basalt and granulite xenolith, and little negative anomaly also exists in Iherzolite xenolith in Hannuoba.  相似文献   

20.
Spinel peridotite xenoliths from Wangqing, NE China exhibit correlative variations in texture, temperature, geochemistry and radiogenic isotopes. This suggests that the Wangqing xenoliths may come from a mantle diapir. It is possible that the fertile and undeformed lherzolites were situated in the interior of the diapir, whereas the refractory and deformed harzburgites and clinopyroxene_poor lherzolites were within the diapiric flanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号