首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
SBR是序批式活性污泥法的简称, SBR系统行运行模式不同,脱氮除磷效果会发生变化。SBR系统氨氮硝化过程在好氧阶段进行,脱氮过程主要在缺氧阶段进行。除少数细菌能进行自养反硝化,大部分反硝化细菌进行反硝化都是进行异养反硝化。经研究发现SBR运行过程中TN浓度和COD浓度具有相关性,COD和TN浓度之间存在三阶函数关系,本实验反硝化速率为1.2mg/L。  相似文献   

2.
A2SBR 反硝化除磷系统的启动和脱氮除磷性能   总被引:2,自引:0,他引:2  
采用厌氧-缺氧SBR(A2SBR)系统,研究了反硝化除磷单污泥系统的启动条件,并考查了该工艺的脱氮除磷效能。结果表明,以城市生活污水处理厂活性污泥为种泥,在厌氧相进水COD浓度250mg·L-1,缺氧相进水NO-3-N浓度30mg·L-1左右时,通过"厌氧-沉淀排水-缺氧-沉淀排水"的周期性运行,可在29d内成功启动A2SBR反硝化除磷系统;运行方式改为"厌氧-缺氧-沉淀排水"后,A2SBR系统很快达到了稳定,在厌氧相和缺氧相HRT分别为3h和4.5h的条件下,其脱氮和除磷效率可分别达到90%和95%,COD去除率大于88%,最终出水的COD,NO-3-N和PO3-4-P浓度可分别降至28,3.35,0.57mg·L-1,表现出良好的反硝化脱氮和除磷性能。  相似文献   

3.
目的研究不同游离亚硝酸(FNA)质量浓度对短程反硝化除磷系统的运行效能的影响.方法利用成功启动的短程反硝化除磷SBR反应器,分析不同FNA质量浓度在缺氧反应段脱氮除磷和碳源的利用效果以及厌氧比释磷速率和缺氧比吸磷速率的变化.结果 FNA质量浓度为1.46×10~(-3 )mg/L时,系统的反硝化和除磷效果最佳;FNA质量浓度为2.19×10~(-3 )mg/L时,系统几乎无除磷效果但反硝化反应仍可发生;随FNA质量浓度的升高,PHB的合成量和消耗量表现为先增多后减少.结论系统内厌氧释磷量与缺氧吸磷量两者之间存在与FNA质量浓度变化不相关的线性关系.  相似文献   

4.
以经过UASB(上流式厌氧活性污泥床)+MAP(磷酸氨镁)处理后的垃圾渗滤液为试验用水,以氧化还原电位(ORP)、pH及溶解氧(DO)作为控制参数,系统研究了序批式活性污泥法(SBR)工艺生物脱氮过程的实时控制策略.结果表明:对于经过前处理的垃圾渗滤液,生物系统可以实现剩余氨氮的完全硝化-反硝化反应;在厌氧阶段,反硝化完全时,ORP曲线出现硝酸盐"膝点";在好氧阶段,硝化完全时,虽然pH曲线没有出现氨"谷点",但出现了转折点.因而,ORP和pH可分别作为反硝化及硝化反应控制参数.实时控制系统经2个月的稳定运行,总有机氮(TOC)和总氮(TN)的去除率分别达到了84 %和98 %.  相似文献   

5.
在传统SBR工艺中,应用一种新型的纳米活性碳纤维悬浮填料,考察其对污水的脱氮除磷效果,并确定其最佳运行条件.结果表明:以进水30min—曝气4h—搅拌2h—沉淀1h—出水30min—闲置30min为最佳运行工况,在此工况运行时,进水NH3—N(氨氮)浓度为16.2~31.8 mg/L,出水NH3—N浓度为0.22~1.55 mg/L,NH3—N(氨氮)去除率为98.6%~95.1%;进水TN(总氮)为19.8~39.1mg/L,出水TN为5.94~13.68mg/L,TN去除率为70%~65%;进水TP(总磷)为3.2~4.5 mg/L,出水TP为0.46~1.13 mg/L,TP去除率为85.6%~75%,系统有较好的脱氮除磷效果,同时还存在同步硝化反硝化过程,以及较好的反硝化除磷功能.  相似文献   

6.
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时,29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34%±3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段,PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.  相似文献   

7.
高氨氮猪场废水的亚硝酸型脱氮研究   总被引:4,自引:2,他引:4  
猪场废水脱氮处理前一般要经过厌氧消化处理,完全厌氧消化能去除废水中大部分有机物,但这同时降低了废水中的COD/NH4^ -N(1-3),根据厌氧消化四阶段理论,控制厌氧消化到水解或产乙酸阶段,使废水中的COD/NH4^ -N维持在较高的水平(7-10),为后续脱氮处理创造条件,本实验对比分析了运用缺氧/好氧SBR工艺处理这两种COD/NH4^ -N不同的废水的脱氮效果,实验结果表明:两的脱氮过程都是通过短程硝化反硝化实现的,反应器中的NH4^ -N浓度和pH值是控制亚硝酸型硝化的重要因素,经过部分厌氧消化的废水由于保持了较高的COD/NH4^ -N脱氮效果明显好于完全厌氧消化废水,NH4 -N去除率达到98%以上,但出水反硝化不完全,投加乙酸钠后出水NOx^--N减少到10-20mg/L,投加量以275mg/L为宜。  相似文献   

8.
COD进水浓度对SBMBBR脱氮除磷效果影响   总被引:8,自引:0,他引:8  
研究了序批式移动床生物膜反应器(SBMBBR)中COD进水浓度对同步脱氮除磷效果的影响.维持进水PO3-4-P浓度为10 mg/L、NH3-N浓度为40 mg/L左右,COD浓度为200~800 mg/L,研究了反应器的脱氮除磷效果.结果表明:厌氧释磷量在COD进水浓度为450 mg/L时达到最大,为61.2 mg/L;之后,增加COD进水浓度不利于磷的释放.在厌氧段初期,TN便有超过30%的损失,可能是因生物吸附造成的.好氧时TN和磷均损失较大,说明在生物膜上很可能发生了同时硝化反硝化和反硝化聚磷.一定范围的COD浓度能促进TN的去除.TN去除率在COD进水浓度为450 mg/L时达到最大,为87.8%,氮磷的去除与生物膜的生物量和生物膜厚度密切相关.  相似文献   

9.
为提高生活污水传统处理工艺反硝化脱氮能力并在系统内部实现污泥减量,设计水解酸化-缺氧-好氧(H-A-O)生物脱氮及污泥减量组合工艺。试验采用连续运行方式,以实际生活污水为对象,进水化学需氧量(COD)为220~410 mg/L,进水NH4+-N质量浓度为36~58 mg/L,硝化液回流比(r)为300%。试验结果表明:水解酸化作用使原水的可生化性提高60%;系统在无外加碳源和碱度条件下,COD,NH14+-N和TN的去除率分别达到90%,95%和74%,其中总氮(TN)去除效果提高12%;当以污泥水解酸化出水和生活污水作为反硝化碳源时,最大NO3--N反硝化速率分别为0.75 mg/min和0.66 mg/min;H-A-O系统利用水解酸化作用实现剩余污泥减量为37%,同时提高系统的脱氮效果。  相似文献   

10.
序批式移动床生物膜反应器脱氮除磷特性及机理   总被引:1,自引:0,他引:1  
为研究生物膜系统脱氮除磷的相关特性及机理,采用序批式移动床生物膜反应器(SBMBBR)处理模拟生活污水。分析代表性周期内各种形态氮、磷等营养元素的变化特点,并与对照组序批式活性污泥反应器(SBR)进行比较。利用显微技术及分子生物学技术对相关特性进行分析。结果表明:SBMBBR在单位质量污泥的化学需用量(COD)负荷为0.8g/(g.d)的条件下对总氮(TN)、总磷(TP)的去除效率分别为91.4%、90.0%,均高于同等条件下的SBR系统。在好氧阶段,生物膜系统内有76.0%的TN损失,表明发生了明显的好氧反硝化过程。利用荧光原位杂交技术(FISH)以及对生物膜微观结构电镜观察的结果表明:微生物的群落结构是SBMBBR脱氮除磷的重要生物学条件,而生物膜内部非均质结构提供了不同氧浓度环境,既为不同习性功能菌的富集提供了良好条件又成为好氧条件下的反硝化过程的关键因素。  相似文献   

11.
以污水厂初沉池出水作为研究对象,考察了常温(8~20℃)条件下,处理规模为5 m3/h的一体化厌氧/好氧生物反应器同步脱氮除磷的效果.试验中,系统脱氮始终存在同步硝化反硝化现象.通过低氧条件下亚硝酸盐的富集,系统进入稳定脱氮期.在稳定脱氮期,反应器出水亚硝酸盐平均累积率达82.52%,系统脱氮以亚硝酸盐型同步硝化反硝化的方式为主,实现了短程同步脱氮及磷和有机物的协同去除.TN,TP和COD平均去除率分别为77.4%,87.7%和90.4%.在该研究条件下,DO质量浓度的最佳控制范围是(0.25±0.10)mg/L.  相似文献   

12.
采用进水浓度逐步上升方法驯化脱氮污泥,获得的活性污泥脱氮性能良好,氨氮去除率达到90%以上,TN去除率最高达到59.0%.实验表明:采用该方法驯化脱氮污泥,实现同步硝化反硝化是有效可行的.在进水氨氮浓度每一提高阶段,氨氮去除率总有下降阶段,但经过3~7周的适应性运行后,系统氨氮去除恢复稳定,达到95%以上.同时,在该实验范围内,COD的提高对氨氮去除也有明显影响,氨氮去除率也有先下降后升高,最终稳定的过程.不同曝气量控制实验发现,在中间曝气量下(本实验为0.7 L/min),能实现较好的脱氮效果,TN去除率达到41.2%.实验表明,存在一中间曝气量,低于或高于该中间值,TN去除率均会降低,当曝气量比较低时,不仅TN去除受影响,氨氮去除率也会降低.  相似文献   

13.
螺旋升流式反应器(Spiral Up-Flow Reactor,SUFR)是一种新型的污水处理工艺,该工艺对污水中COD、TN、TP的去除效果较好,出水浓度分别低于28 mg/L、10 mg/L和0.5mg/L.本文对螺旋升流式反应器脱氮除磷系统中的反硝化吸磷现象进行了深入的研究,通过分析发现,适当的COD浓度和DO浓度有利于同时反硝化吸磷现象的发生。  相似文献   

14.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

15.
采集某城市污水处理厂的A/O工艺回流活性污泥作为污泥样品,利用SBR反应器,以硝酸盐为电子受体,在低碳源下,培养和驯化反硝化除磷菌。第一阶段采用厌氧/好氧/沉淀/排水的运行方式10周期,第二阶段采用厌氧/好氧/缺氧/好氧/沉淀/排水运行方式40周期。反硝化脱氮除磷性能的测试结果表明,经培养驯化得到的反硝化除磷菌处理低碳源废水,PO43--P的去除率达96%,出水浓度稳定在0.4 mg/L以下;NH4+-N去除率达78%,出水浓度稳定在3 mg/L以下;COD的去除率达86%,出水浓度稳定在20 mg/L以下;表明采用SBR反应器进行反硝化菌的培养驯化是可行的。  相似文献   

16.
垃圾渗滤液处理中SBR法脱氮研究   总被引:3,自引:0,他引:3  
简介了污水脱氮等技术的进展;以深圳市下坪垃圾填埋场渗滤波为对象,在SBR设备中进行了渗滤液同步硝化反硝化的研究,分析了COD,D0,NH3—N对同步硝化—反硝化所产生的影响。结论表明,同步硝化—反硝化进行的程度与溶液中氨氮浓度呈反比关系,而与COD浓度及氨氮浓度的下降速度成正比。  相似文献   

17.
CAST分段进水深度脱氮性能及在线控制   总被引:5,自引:0,他引:5  
以生活污水为处理对象,考察循环式活性污泥法(CAST)分段进水深度脱氮在线控制工艺中有机物降解、硝化和反硝化反应过程中氧化还原电位(ORP)及pH值的变化规律,建立这些控制参数与有机物去除、硝化和反硝化反应过程中主要污染物指标间的相关关系。研究结果表明:根据ORP及pH曲线上的特征点适时地停止曝气与进水缺氧搅拌,能更加有效地控制CAST多段进水工艺,达到深度脱氮的目的,并尽可能降低运行成本;当进水COD为155.0~443.6mg/L和NH4+-N质量浓度为57.98~82.40mg/L时,系统最终出水COD(化学需氧量)低于40mg/L,NH+4-N质量浓度低于0.5mg/L,TN(总氮)质量浓度低于2.0mg/L;在17,23和30℃时,升高温度能显著提高系统反硝化效果,反硝化速率随温度上升而递增;当原水有机碳源充足时,分段进水次数增多,由于反硝化速率加快,反应时间缩短,且反应末端外碳源投加量减少;采用CAST分段进水深度脱氮工艺系统除磷性能稳定,且去除率可达90%以上。  相似文献   

18.
前置反硝化生物滤池具有良好的脱氮性能,回流比是影响其脱氮性能的重要影响因素.调节回流比参数,考察回流比分别为100%、200%、300%时的工艺参数条件下,前置反硝化生物滤池对COD、NH3—N、NO3-—N、TN的去除效果.试验表明回流比对反应器中COD、NH3—N、NO3-—N、TN均有一定的影响,对TN的去除影响最大.在一定的范围内(100%~200%),增加回流比有助于提高系统对污染物的去除,但当回流比过大时(300%),系统出水水质下降.确定最佳回流比为200%,该工况下系统出水COD、NH3—N、TN平均质量浓度分别为28.45、2.27、12.45 mg/L.  相似文献   

19.
连续流双污泥系统反硝化除磷脱氮特性   总被引:8,自引:0,他引:8  
以生活污水为处理对象 ,对基于缺氧吸磷理论开发出的连续流厌氧 /缺氧 -硝化 (A2 N)双污泥新工艺反硝化除磷脱氮的性能进行了考察 .试验结果表明 :A2 N双泥系统能使硝化菌和反硝化聚磷菌分别在各自最佳的环境中生长 ,利于系统脱氮除磷的稳定和高效 ,可控制性也得到了提高 .研究发现 ,当进水 ρ(C) / ρ(N)为 3.97时 ,ρ(总氧 ,TN) / ρ(总磷 ,TP)和化学耗氧量 (COD)去除率分别为 80 .99% ,92 .87%和 91% ;而当提高进水 ρ(C) / ρ(N)至 6 .4 9时 ,可进一步提高脱氮除磷效果 ,ρ(TN) ,ρ(TP)和COD去除率分别达到 92 .7% ,97.95 %和 95 % .可见 ,该工艺较适合进水COD/ ρ(TN) 偏低的城市污水脱氮除磷处理 .  相似文献   

20.
为探讨双污泥反硝化除磷技术在处理生活污水时N_2O产生量的影响因素,通过控制进水中化学需氧量(COD)浓度以及不同曝气量,分析了装置内总氮(TN)、总磷(TP)、氨氮(NH_(3~-)N)、亚硝酸盐氮(NO_(2~-)-N)、硝酸盐氮(NO_(3~-)-N)含量,研究了不同控制条件下N_2O的释放量,并对不同DO浓度下NH_3和NO_(2~-)-N完全降解所需时间进行了探讨。结果表明:1)硝化阶段DO浓度为3 mg/L时释放的N_2O浓度最低;2)随进水COD浓度的增加,反应完全后装置内TN浓度依次降低、TP浓度依次增大;3)反硝化阶段,进水COD浓度为300 mg/L时,释放的N_2O浓度达到最大值(5.34 mg/L)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号