首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
基于曲波变换的地震信号去噪方法   总被引:1,自引:0,他引:1  
根据curvelet变换的性质和阈值去噪原理,提出一种地震信号自适应阈值去噪方法.首先对地震信号进行curvelet变换,利用地震信号的curvelet,变换系数在小同分解层的特点,通过计算curvelet系数统计量的方法来确定自适应阈值,然后采用软阈值折衷方法埘curvelet系数进行处理,最后通过curvelet逆变换得到去噪的地震信号.试验结果表明,该方法在去除噪声的同时能更好地保留信号的细节,其去噪效果要优于传统的小波去噪方法.  相似文献   

2.
地震信号去噪处理是地震勘探所要解决的一项主要任务,提高地震信号信噪比也相应显得尤为重要。本文提出由heursure选取阈值和软阈值函数对测试信号、合成地震信号及实际地震数据进行二次小波分解分层量化处理,与常规小波阈值去噪相比,对含有高频分量的信号,该方法具有很好的去噪效果。  相似文献   

3.
探讨在地震勘探中小波变换处理非平稳信号的时频分析方法,从强噪声地震信号中除去干扰进而提取有效信号。在D.L.Dohono提出的小波阈值去噪方法的基础上,提出了一种新的阈值函数用于非平稳强震降噪。该函数是介于硬、软阈值函数之间的一个可调函数,具有计算稳定性好、精度高、收敛速度快、对模型参数α的选择简单易于操作等特征。通过仿真实验和实际地震处理验证,表明所构造的新阈值函数能有效改善地震剖面处理效果,达到提高信噪比的目的。  相似文献   

4.
压制随机噪声是地震数据处理过程中的一个重要环节,目前大多数去噪技术都不同程度存在去噪效果差、易损伤有效信号等问题。利用经验模态分解可将信号自适应地分解为不同特征尺度固有模态函数的优点,及小波变换模极大值滤波方法对噪声的依赖性较小且适合于低信噪比信号去噪的优势,构造了一种经验模态分解与小波变换模极大值相结合的新的去噪算法,该算法很好地实现了地震有效信号与随机噪声的分离,有效提高了地震数据信噪比。将该算法应用于仿真实验和实际地震数据处理,结果都表明该方法明显优于常规经验模态分解去噪效果。  相似文献   

5.
基于小波变换的爆破地震信号去噪的应用   总被引:1,自引:0,他引:1  
运用小波变换在不同的尺度下观察信号局部化特征。由于信号和噪声具有不同的奇异性,它们的二进小波变换模的极大值在不同尺度下的传播特性也不相同。在相邻模极小构成的待选通域中分析出噪声局部极大值所在的选通域进行平滑处理,从而得到局部信号的小波系数,将其反变换重建出去噪后的信号。将该方法用于爆破地震信号去噪声,结果表明:这种方法计算简单,且去噪效果较好。  相似文献   

6.
由于沙漠地震信号中含有较强的随机噪声,从而给沙漠地震数据的处理和解释带来了很大的困难。针对上述问题,提出了一种基于Shearlet 变换的深度残差卷积神经网络( ST-CNN: Deep Residual Convolutional NeuralNetwork for Shearlet Transform) 模型,实现沙漠地震信号的随机噪声压制。在训练阶段,将沙漠地震信号经Shearlet 分解后的系数作为输入,将随机噪声经Shearlet 分解后的系数作为标签,通过卷积神经网络( CNN: Convolutional Neural Network) 学习输入和标签之间的映射关系; 在测试阶段,利用此映射关系即可从沙漠地震信号系数中预测出噪声系数,并间接地获得有效信号系数,最后通过Shearlet 反变换获得有效信号。通过与传统的Shearlet 硬阈值去噪算法对比,发现该算法可把沙漠地震信号的信噪比从- 4. 48 dB 提高到14. 15 dB,具有更好的去噪效果。  相似文献   

7.
介绍了小波变换出现的背景及应用意义、信号去噪效果的标准及小波变换去噪的基本原理和方法。利用MATLAB软件特别是MATLAB小波工具箱编写仿真程序,结果表明小波变换在信号去噪中的有效性和优越性。  相似文献   

8.
由于采集环境及仪器性能的限制,采集的地震信号中含有较强的随机噪声,对后续的处理和解释带来很大困难.多尺度几何分析近年来受到关注,在Shearlet变换域中引入非局部均值(NLM,non-local mean algorithm)算法对地震信号进行去噪,该算法首先对地震信号进行非下采样Shearlet变换,对近似服从广义高斯分布的Shearlet系数进行主成分分析(PCA,principal component analysis),然后采用非局部均值处理Shearlet系数,最后对新的Shearlet系数进行Shearlet反变换,得到去噪之后的地震信号.实验结果表明,文中算法在低噪声情况下能够获得优于非局部均值算法的去噪效果,对地震信号去噪具有可行性.  相似文献   

9.
分析了信号和噪声在小波域的不同特征表现,并根据语音中浊音和清音的特点,提出了一种改进的多尺度多阈值的小波域语音去噪方法.该方法采用软限幅函数对浊音和清音信号的小波变换系数作不同的阈值处理,既抑制了噪声,又减少了语音段信息的损失,提高了信噪比.仿真结果表明,这是一种有效的语音增强方法.  相似文献   

10.
介绍一种可用迭代方法实现了K-L变换折神经网络及相应的算法,采用该算法对网络的杈 作修理,可使网络唯一的收敛到一个稳定点,其m仃输出神经元对应的权依次为最大m个特征值所对应的单位特征矢量。文章给邮了网络实现中的改进结构,并把该网络用于图象压缩。  相似文献   

11.
基于固定点算法的地震数据降噪   总被引:1,自引:0,他引:1  
 结合改进的固定点算法,解决了噪声环境下的ICA问题。根据噪声分布特性,分两个阶段去除不同类型的随机噪声。在预处理阶段去除了加性高斯白噪声,预处理后的数据采用改进的固定点算法,盲分离出有效信号和非高斯随机噪声。提出了对固定点算法迭代过程中设定较精确的初始值问题的算法,该方法能较为准确地设置初始值,使算法能提取有效信号。通过仿真实验和对实际地震数据的处理,得到了满意的分离结果,较好地恢复了有效信号。此外,当实际地震数据加载了较强噪声,信噪比降低时,采用本文算法进行盲分离,同样取得了良好的效果,再次验证了本文算法具有良好的稳健性和适应性。将盲分离算法应用到实际地震数据处理方面的研究,有助于地震资料的解释,同时这种处理技术的研究也能够促进盲分离技术的发展。  相似文献   

12.
利用小波变换多尺度传播特性实现地震信号去噪   总被引:3,自引:0,他引:3  
小波变换可以把时域信号变换到时间尺度域中,在不同的尺度下观察信号不同的局部化特征.由于信号和噪声具有不同的奇异性,它们的二进小波变换模的极大值在不同尺度下的传播特性也不同.文中根据信号和噪声在小波变换域模极大值的多尺度传播特性的不同,以及地震信号相邻道的相关性,提出了一种去除地震信号中随机噪声的方法,实验表明该方法具有较好的去噪效果.  相似文献   

13.
提出一种基于ART神经网络(及其改型)从地震剖面中识别子波的新方法.发挥神经网络在模式识别和优化计算两方面的优势,先以无教师学习算法从剖面中识别出子波,再通过TH神经网络作反褶积.实验结果表明,本文提出的方法有明显的效果,特别在地震剖面中存在一些相隔较远的反射层时有很好的效果.  相似文献   

14.
小波变换在时域以及频域具有良好的局域化特征,可用来实现对地震信号瞬时振幅、相位、频率等瞬时参数的提取.由于小波变换具有去噪的功能和分频处理的特点,在小波域提取的瞬时特征具有很好的抗噪性和可靠性.对小波变换提取地震信号瞬时参数的方法进行改进,通过对地震信号求导来增加其主频,对求导后的地震信号进行小波变换,从而得到高分辨率地震信号的瞬时参数.  相似文献   

15.
探讨了小波变换在图像去噪中的处理技术.首先分析了小波变换的原理,然后给出了基于小波变换的图像去噪原理,并设计了小波变换图像去噪的具体实施方案,最后给出了小波变换去噪的图像训练实验结果.结果表明,利用小波分解(变换)去除图像噪声,既滤除了噪声,又有效地保持了图像的细节信息.  相似文献   

16.
为改善目前遥测数据检测系统硬件体积较大、数据测量误差大、去噪算法适用性弱等缺陷,利用改进小波阈值的遥测参数去噪算法实现了遥测监测系统软件化设计,通过对遥测空速、发动机转速等参数进行小波去噪效果实验分析,结果表明,该算法对于空速数据去噪效果显著提升,将测量误差平方和降低为2 199. 6,去噪拟合曲线与原始数据曲线相似度高达0. 989,且对其他遥测数据噪声处理具有较好的通用性。  相似文献   

17.
利用地震观测台阵中相邻台站间背景噪声互相关函数随时间的偏移的特性,考虑参考互相关函数、噪声源变化、反演方法和数据误差的影响,给出基于背景噪声互相关函数的密集台阵时钟偏差分析及其误差评价方法。对盐源短周期地震观测密集台阵的单台时钟偏差分析结果表明,基于背景噪声互相关函数的时钟偏差分析方法可以给出连续的单台时钟偏差,并能够筛选出有明显时钟偏差的台站及偏差出现的时段。该台阵的209个台站中,有17个台站在观测期内出现大于1 s的时钟偏差,可能与仪器数据采集装置的硬件或软件故障有关。  相似文献   

18.
针对矿山微震信号中所包含的随机噪声对微震监测和微震源的准确定位存在着严重干扰的问题,根据前人的研究成果,在分层阈值上增加分层自适应因子,提出一种新的分层自适应阈值方法.该方法根据矿山微震有效信号的低频特性,利用分层自适应因子,将高频部分的噪声信号最大限度地去除,提高矿山微震信号的信噪比;同时,最大程度地保留低频部分的信号.通过实际数据与分层阈值的对比,验证了该方法的有效性与优越性.  相似文献   

19.
在薄互层地震储层预测中,属性分析和地震反演是当前应用地震资料进行储层预测的主要技术,两者实质上都属于反问题范畴,两者各有优缺点。本文提出了一种基于PNN神经网络的多属性地震反演技术,可以比较好地发挥两者的优势。概率神经网络PPN)是一种数学内插方案,只不过在实现时利用了神经网络的架构,可以通过数学公式理解它的行为,克服了BP网络的的“黑匣子”问题。该技术在GTZ扶杨油层的砂岩预测中应用效果较好,厚度大于3m的砂岩识别符合率超过90%以上。  相似文献   

20.
在图象变换编码领域,K—L变换是最小均方误差意义上的最佳变换,但是变换矩阵随图象内容而不同,且计算复杂,速度慢。本文选择了合理的计算自协方差矩阵的特征矢量的方法,以削减计算时间。同时提出将模式识别引入K—L变换的一种新的图象压缩的方法,用精选的模式集训练BP神经网络,使之在计算中将各个子图象正确归类,以选择合适的变换矩阵。这一方法成功地降低了计算复杂性,并且回避了病态矩阵问题。它具有高压缩比和低复杂性的特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号