首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

3.
Olfaction: mosquito receptor for human-sweat odorant   总被引:1,自引:0,他引:1  
Hallem EA  Nicole Fox A  Zwiebel LJ  Carlson JR 《Nature》2004,427(6971):212-213
Female Anopheles mosquitoes, the world's most important vector of Plasmodium falciparum malaria, locate their human hosts primarily through olfactory cues, but the molecular mechanisms that underlie this recognition are a mystery. Here we show that the Anopheles gambiae protein AgOr1, a female-specific member of a family of putative odorant receptors, responds to a component of human sweat. Compounds designed to activate or block receptors of this type could function as attractants for trapping mosquitoes or as insect repellents in helping to control Anopheles and other insect pests.  相似文献   

4.
T T Quach  C Rose  A M Duchemin  J C Schwartz 《Nature》1982,298(5872):373-375
Serotonin-containing neurones in brain have been proposed to have a role in the control of physiological mechanisms such as sleep, thermoregulation, pain perception and endocrine secretions as well as in the physiopathology of migraine or depressive illness. One difficulty in testing these possibilities lies in the scarcity of pharmacological agents able to interact selectively with the probably multiple classes of serotonin receptors in the central nervous system. Development of such agents would be facilitated by simple in vitro models in which biological responses to serotonin in mammalian brain could be quantified. Thus a serotonin-sensitive adenylate cyclase has been characterized in rat brain, but the response to serotonin is weak in newborn and practically absent in adult animals. In addition, two pharmacologically distinct classes of serotoninergic binding site have been identified using 3H-serotonin and 3H-spiperone as ligands, but their identification as receptors remains to be established. More recently, serotonin has been shown to stimulate phosphorylation of a neuronal protein in slices from the facial motor nucleus, although the receptors mediating this action were not characterized. We now report that serotonin stimulates glycogen hydrolysis in slices of cerebral cortex, that this action is mediated by a novel class of receptors and that tricyclic antidepressants are among the best competitive antagonists of the indolamine.  相似文献   

5.
:Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.  相似文献   

6.
Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.  相似文献   

7.
Dupont E  Hanganu IL  Kilb W  Hirsch S  Luhmann HJ 《Nature》2006,439(7072):79-83
The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this activity requires an intact subplate and is strongly synchronized within a cortical column by gap junctions. With the developmental disappearance of the subplate at the end of the first postnatal week, activation of NMDA (N-methyl-D-aspartate) receptors in the immature cortical network is essential to generate this columnar activity pattern. Our findings show that during a brief developmental period the cortical network switches from a subplate-driven, gap-junction-coupled syncytium to a synaptic network acting through NMDA receptors to generate synchronized oscillatory activity, which may function as an early functional template for the development of the cortical columnar architecture.  相似文献   

8.
A Ohta  M Sitkovsky 《Nature》2001,414(6866):916-920
Inappropriate or prolonged inflammation is the main cause of many diseases; for this reason it is important to understand the physiological mechanisms that terminate inflammation in vivo. Agonists for several Gs-protein-coupled receptors, including cell-surface adenosine purinergic receptors, can increase levels of immunosuppressive cyclic AMP in immune cells; however, it was unknown whether any of these receptors regulates inflammation in vivo. Here we show that A2a adenosine receptors have a non-redundant role in the attenuation of inflammation and tissue damage in vivo. Sub-threshold doses of an inflammatory stimulus that caused minimal tissue damage in wild-type mice were sufficient to induce extensive tissue damage, more prolonged and higher levels of pro-inflammatory cytokines, and death of male animals deficient in the A2a adenosine receptor. Similar observations were made in studies of three different models of inflammation and liver damage as well as during bacterial endotoxin-induced septic shock. We suggest that A2a adenosine receptors are a critical part of the physiological negative feedback mechanism for limitation and termination of both tissue-specific and systemic inflammatory responses.  相似文献   

9.
The mammalian immune system has an extraordinary potential for making receptors that sense and neutralize any chemical entity entering the body. Inevitably, some of these receptors recognize components of our own body, and so cellular mechanisms have evolved to control the activity of these 'forbidden' receptors and achieve immunological self tolerance. Many of the genes and proteins involved are conserved between humans and other mammals. This provides the bridge between clinical studies and mechanisms defined in experimental animals to understand how sets of gene products coordinate self-tolerance mechanisms and how defects in these controls lead to autoimmune disease.  相似文献   

10.
A Dumuis  M Sebben  L Haynes  J P Pin  J Bockaert 《Nature》1988,336(6194):68-70
Receptors for excitatory amino-acid transmitters on nerve cells fall into two main categories associated with non-selective cationic channels, the NMDA (N-methyl-D-aspartate) and non-NMDA (kainate and quisqualate) receptors. Special properties of NMDA receptors such as their voltage-dependent blockade by Mg2+ (refs 3, 4) and their permeability to Na+, K+ as well as to Ca2+ (refs 5, 6), have led to the suggestion that these receptors are important in plasticity during development and learning. They have been implicated in long-term potentiation (LTP), a model for the study of the cellular mechanisms of learning. We report here that glutamate and NMDA, acting at typical NMDA receptors, stimulate the release of arachidonic acid (as well as 11- and 12-hydroxyeicosatetraenoic acids from striatal neurons probably by stimulation of a Ca2+-dependent phospholipase A2. Kainate and quisqualate, as well as K+-induced depolarization were ineffective. Our results provide direct evidence in favour of the hypothesis, that arachidonic acid derivatives, produced by activation of the postsynaptic cell, could be messengers that cross the synaptic cleft to modify the presynaptic functions known to be altered during LTP. In addition, we suggest that NMDA receptors are the postsynaptic receptors which trigger the synthesis of these putative transynaptic messengers.  相似文献   

11.
Herpesvirus-transformed cytotoxic T-cell lines   总被引:3,自引:0,他引:3  
D R Johnson  M Jondal 《Nature》1981,291(5810):81-83
Investigations of cellular cytotoxicity of the immune system are hampered by the lack of continuously growing, transformed cell lines which express a cytotoxic potential. Here we describe cytotoxic cell lines from the cotton-topped marmoset monkey, transformed by Herpesvirus Ateles (HVA) or Herpesvirus Saimiri (HVS), which can kill certain target cells in a short-term in vitro test. HVA/HVS-transformed cells have earlier been classified as belonging to the T-cell lineage in contrast to Epstein-Barr virus (EBV)-transformed cells derived from B lymphocytes. We suggest that the HVA/HVS-transformed killer cell lines described here represent an effector population resembling, or corresponding to, marmoset natural killer (NK) cells and that they may be used to define the cytolytic mechanism involved in cellular cytotoxicity and possibly also effector cell receptors and target cell antigens, as well as regulatory mechanisms of general biological interest.  相似文献   

12.
J Chin  S S Lee  K J Lee  S Park  D H Kim 《Nature》1999,401(6750):254-257
Molecular recognition is the key step in a wide range of controlled separation and chemical transformation processes, with enzymes performing this task with an unsurpassed degree of selectivity. Enzymes contain only 20 simple amino acids, yet it remains difficult to rationalize or even predict these stereospecific recognition events. Nonetheless, the rational design of receptors able to recognize amino acids stereospecifically is attracting considerable interest because therapeutic drugs, that may be developed from chiral amino acid intermediates, are increasingly required in enantiomerically pure form. Early work has stimulated the development of efficient receptors based on small molecules, but binding of amino acids with high and predictable stereospecificity remains difficult to achieve. Directed molecular evolution, on the other hand, does select for RNA sequences or antibodies that bind amino acids with high specificity, but typically without providing insights into the molecular recognition mechanisms involved. Here we show that a rationally designed metal complex formed from a trivalent cobalt ion and a tetradentate ligand binds natural amino acids, including the simple yet challenging amino acid alanine, with high and predictable regio- and stereospecificity. We expect that our approach will allow the binding as well as separation and stereospecific catalytic formation of its target amino acids.  相似文献   

13.
H Riedel  T J Dull  J Schlessinger  A Ullrich 《Nature》1986,324(6092):68-70
The cell surface receptors for insulin and epidermal growth factor (EGF) appear to share a common evolutionary origin, as suggested by structural similarity of cysteine-rich regions in their extracellular domains and a highly conserved tyrosine-specific protein kinase domain. Only minor similarity is found outside this catalytic domain, as expected for receptors that have different ligand specificities and generate different biological signals. The EGF receptor is a single polypeptide chain but the insulin receptor consists of distinct alpha and beta subunits that function as an alpha 2 beta 2 heterotetrameric receptor complex. Provoked by this major structural difference in two receptors that carry out parallel functions, we have designed a chimaeric receptor molecule comprising the extracellular portion of the insulin receptor joined to the transmembrane and intracellular domains of the EGF receptor to investigate whether one ligand will activate the tyrosine kinase domain of the receptor for the other ligand. We show here that the EGF receptor kinase domain of the chimaeric protein, expressed transiently in simian cells, is activated by insulin binding. This strongly suggests that insulin and EGF receptors employ closely related or identical mechanisms for signal transduction across the plasma membrane.  相似文献   

14.
就外周阿片受体的分布和阿片类物质的外周镇痛作用及机制的相关研究进展进行综述.阿片类物质的镇痛作用通过中枢和外周两种机制,研究表明:阿片类物质的外周镇痛作用是通过外周阿片受体起作用的.初级感觉神经元内及其外周末梢上存在着各类阿片受体,在炎症及神经损伤的情况下,阿片受体合成增加并转运到神经末梢或者受损部位,增加传导痛觉冲动...  相似文献   

15.
Eukaryotic cells have evolved a variety of mechanisms for dampening their responsiveness to hormonal stimulation in the face of sustained activation. The mechanisms for such processes, collectively referred to as desensitization, often involve alterations in the properties and number of cell-surface hormone receptors. It has been speculated that phosphorylation-dephosphorylation reactions, which are known to regulate the catalytic activities of enzymes, also regulate the function of receptors. Highly specific receptor kinases, such as rhodopsin kinase and beta-adrenergic receptor kinase, which show stimulus-dependent phosphorylation of receptors have been described. Direct evidence for a causal relationship between receptor phosphorylation and desensitization has been lacking however. Here we report that prevention of agonist-stimulated beta 2-adrenergic receptor (beta 2AR) phosphorylation by truncation of its serine and threonine-rich phosphate acceptor segment delays the onset of desensitization. We also show that selective replacement of these serine and threonine residues by alanine and glycine delays desensitization even further. These data provide the first direct evidence that one molecular mechanism of desensitization of G-protein-coupled receptors involves their agonist-induced phosphorylation.  相似文献   

16.
Regulation of the mevalonate pathway   总被引:193,自引:0,他引:193  
J L Goldstein  M S Brown 《Nature》1990,343(6257):425-430
The mevalonate pathway produces isoprenoids that are vital for diverse cellular functions, ranging from cholesterol synthesis to growth control. Several mechanisms for feedback regulation of low-density-lipoprotein receptors and of two enzymes involved in mevalonate biosynthesis ensure the production of sufficient mevalonate for several end-products. Manipulation of this regulatory system could be useful in treating certain forms of cancer as well as heart disease.  相似文献   

17.
F Hochstenbach  M B Brenner 《Nature》1989,340(6234):562-565
Specific monoclonal antibodies have made possible the identification of two T-cell antigen receptor (TCR) heterodimers, alpha beta TCR and gamma delta TCR. Formation of these receptors is largely separated by the preferential pairing of alpha-TCR with beta and gamma-TCR with delta, the sequential rearrangement and expression of the TCR loci during thymic development and the deletion of the delta-loci either prior to or concomitant with alpha-rearrangement in alpha beta TCR cells. Here we show that delta-TCR can substitute for alpha in pairing with beta to form a beta delta heterodimer. This receptor is expressed on the cell surface of the T-leukaemia cell line DND41 as analysed with beta- and delta-specific monoclonal antibodies. We suggest that a variety of factors including, for example, the deletion of the delta-TCR loci, can now be understood as exclusion mechanisms operating to prevent not only the formation of gamma delta receptors, but also of beta delta T-cell receptors, thereby promoting the numerically dominant alpha beta TCR lineage. Nevertheless, some developing T-cells that do not rearrange the alpha-loci may express the beta delta TCR as described here.  相似文献   

18.
Sine SM  Engel AG 《Nature》2006,440(7083):448-455
Throughout the nervous system, moment-to-moment communication relies on postsynaptic receptors to detect neurotransmitters and change the membrane potential. For the Cys-loop superfamily of receptors, recent structural data have catalysed a leap in our understanding of the three steps of chemical-to-electrical transduction: neurotransmitter binding, communication between the binding site and the barrier to ions, and opening and closing of the barrier. The emerging insights might be expected to explain how mutations of receptors cause neurological disease, but the opposite is generally true. Namely, analyses of disease-causing mutations have clarified receptor structure-function relationships as well as mechanisms governing the postsynaptic response.  相似文献   

19.
Isogai Y  Si S  Pont-Lezica L  Tan T  Kapoor V  Murthy VN  Dulac C 《Nature》2011,478(7368):241-245
The vomeronasal organ (VNO) has a key role in mediating the social and defensive responses of many terrestrial vertebrates to species- and sex-specific chemosignals. More than 250 putative pheromone receptors have been identified in the mouse VNO, but the nature of the signals detected by individual VNO receptors has not yet been elucidated. To gain insight into the molecular logic of VNO detection leading to mating, aggression or defensive responses, we sought to uncover the response profiles of individual vomeronasal receptors to a wide range of animal cues. Here we describe the repertoire of behaviourally and physiologically relevant stimuli detected by a large number of individual vomeronasal receptors in mice, and define a global map of vomeronasal signal detection. We demonstrate that the two classes (V1R and V2R) of vomeronasal receptors use fundamentally different strategies to encode chemosensory information, and that distinct receptor subfamilies have evolved towards the specific recognition of certain animal groups or chemical structures. The association of large subsets of vomeronasal receptors with cognate, ethologically and physiologically relevant stimuli establishes the molecular foundation of vomeronasal information coding, and opens new avenues for further investigating the neural mechanisms underlying behaviour specificity.  相似文献   

20.
E Lai  P Concannon  L Hood 《Nature》1988,331(6156):543-546
Generation of an immune response depends on the interaction of haematopoietic cell types, among which T cells and their receptors are of central importance. The T-cell receptor is a heterodimer consisting of disulphide-linked alpha and beta-chains, each chain divided into variable (V) and constant (C) regions. The beta-chain is encoded by the rearrangement of separate variable (V beta), diversity (D beta) and joining (J beta) gene segments during T-cell differentiation. To examine the mechanisms of somatic DNA rearrangement and evolution of the beta-gene segments, we have constructed a physical map of the human T-cell receptor beta-chain family containing 40 V beta gene segments as well as both C beta gene clusters. A comparison of the published nucleotide sequences of human and murine V beta gene segments reveals 12 examples of gene segments sharing 65% or more interspecies homology. The relative order of these human and murine V beta gene segment homologues is also conserved along the chromosome, apart from more extensive human gene duplication, presumably as a consequence of constraints imposed on evolutionary mechanisms operating to diversify these gene families or of selective pressures operating to maintain order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号