首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13(+0.03)(-0.02) solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.  相似文献   

2.
Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10?AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10?M(J), where M(J) = 318?M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30?M(⊕)) and super-Earths (5-10?M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.  相似文献   

3.
After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung-Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.  相似文献   

4.
The nature of dark matter remains mysterious, with luminous material accounting for at most approximately 25 per cent of the baryons in the Universe. We accordingly undertook a survey looking for the microlensing of stars in the Large Magellanic Cloud (LMC) to determine the fraction of Galactic dark matter contained in massive compact halo objects (MACHOs). The presence of the dark matter would be revealed by gravitational lensing of the light from an LMC star as the foreground dark matter moves across the line of sight. The duration of the lensing event is the key observable parameter, but gives non-unique solutions when attempting to estimate the mass, distance and transverse velocity of the lens. The survey results to date indicate that between 8 and 50 per cent of the baryonic mass of the Galactic halo is in the form of MACHOs (ref. 3), but removing the degeneracy by identifying a lensing object would tighten the constraints on the mass in MACHOs. Here we report a direct image of a microlens, revealing it to be a nearby low-mass star in the disk of the Milky Way. This is consistent with the expected frequency of nearby stars acting as lenses, and demonstrates a direct determination of a lens mass from a microlensing event. Complete solutions such as this for halo microlensing events will probe directly the nature of the MACHOs.  相似文献   

5.
Konacki M  Torres G  Jha S  Sasselov DD 《Nature》2003,421(6922):507-509
Planets orbiting other stars could in principle be found through the periodic dimming of starlight as a planet moves across--or 'transits'--the line of sight between the observer and the star. Depending on the size of the planet relative to the star, the dimming could reach a few per cent of the apparent brightness of the star. Despite many searches, no transiting planet has been discovered in this way; the one known transiting planet--HD209458b--was first discovered using precise measurements of the parent star's radial velocity and only subsequently detected photometrically. Here we report radial velocity measurements of the star OGLE-TR-56, which was previously found to exhibit a 1.2-day transit-like light curve in a survey looking for gravitational microlensing events. The velocity changes that we detect correlate with the light curve, from which we conclude that they are probably induced by an object of around 0.9 Jupiter masses in an orbit only 0.023 au from its star. We estimate the planetary radius to be around 1.3 Jupiter radii and its density to be about 0.5 g x cm(-3). This object is hotter than any known planet (approximately 1,900 K), but is still stable against long-term evaporation or tidal disruption.  相似文献   

6.
Krumholz MR  McKee CF  Klein RI 《Nature》2005,438(7066):332-334
There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (M(o)), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (approximately 0.5M(o)), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.  相似文献   

7.
Jiang Z  Tamura M  Fukagawa M  Hough J  Lucas P  Suto H  Ishii M  Yang J 《Nature》2005,437(7055):112-115
The formation process for stars with masses several times that of the Sun is still unclear. The two main theories are mergers of several low-mass young stellar objects, which requires a high stellar density, or mass accretion from circumstellar disks in the same way as low-mass stars are formed, accompanied by outflows during the process of gravitational infall. Although a number of disks have been discovered around low- and intermediate-mass young stellar objects, the presence of disks around massive young stellar objects is still uncertain and the mass of the disk system detected around one such object, M17, is disputed. Here we report near-infrared imaging polarimetry that reveals an outflow/disk system around the Becklin-Neugebauer protostellar object, which has a mass of at least seven solar masses (M(o)). This strongly supports the theory that stars with masses of at least 7M(o) form in the same way as lower mass stars.  相似文献   

8.
Thommes EW  Duncan MJ  Levison HF 《Nature》1999,402(6762):635-638
Planets are believed to have formed through the accumulation of a large number of small bodies. In the case of the gas-giant planets Jupiter and Saturn, they accreted a significant amount of gas directly from the protosolar nebula after accumulating solid cores of about 5-15 Earth masses. Such models, however, have been unable to produce the smaller ice giants Uranus and Neptune at their present locations, because in that region of the Solar System the small planetary bodies will have been more widely spaced, and less tightly bound gravitationally to the Sun. When applied to the current Jupiter-Saturn zone, a recent theory predicts that, in addition to the solid cores of Jupiter and Saturn, two or three other solid bodies of comparable mass are likely to have formed. Here we report the results of model calculations that demonstrate that such cores will have been gravitationally scattered outwards as Jupiter, and perhaps Saturn, accreted nebular gas. The orbits of these cores then evolve into orbits that resemble those of Uranus and Neptune, as a result of gravitational interactions with the small bodies in the outer disk of the protosolar nebula.  相似文献   

9.
In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars (the most common stars in our Galaxy), this model favours the formation of Earth-mass (M(o)) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (au), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars. More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 au from normal stars. Here we report the discovery of a 5.5(+5.5)(-2.7) M(o) planetary companion at a separation of 2.6+1.5-0.6 au from a 0.22+0.21-0.11 M(o) M-dwarf star, where M(o) refers to a solar mass. (We propose to name it OGLE-2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.  相似文献   

10.
本文在文献[1]、[2]的基础上,应用相对论性牛顿万有引力定律,对原初典型恒星及其星核M。黑洞的形成、演化和结构,作了更深入的探索研究.得到了一系列很有意义的结果:1、导出了原初典型恒星Mo及其星核Ms黑洞质量的上界和下界.进而导出了原初典型恒星在其简并中子黑涧(Mos=Mo)态下一分为二的死亡大爆炸中释放能量的上下界(即超新星爆发所释放能量的上下界);2、导出了星核Ms黑洞独有的一系列鼎级极限物理特性.导出了黑洞无内阻理想流体的超流效应及黑洞吸集粒子的经纬分流的筛选效应.证明了星核Ms黑洞是具有不再爆炸、不再坍缩、不再发射的“三不”特性的稳定天体;3、在相对论性引力理论框架内,证明了光速最大原理;4、导出了原初典型恒星在一分为二的死亡大爆炸中静质量Mo、场(暗)质量△MG的结构和分布规律.揭示了星核Ms黑洞结构的奥秘;5、导出了恒星、星系、总星系等典型层次天体的真空中场(暗)质量的分布规律.  相似文献   

11.
Kalas P  Graham JR  Clampin M 《Nature》2005,435(7045):1067-1070
The Sun and >15 per cent of nearby stars are surrounded by dusty disks that must be collisionally replenished by asteroids and comets, as the dust would otherwise be depleted on timescales <10(7) years (ref. 1). Theoretical studies show that the structure of a dusty disk can be modified by the gravitational influence of planets, but the observational evidence is incomplete, at least in part because maps of the thermal infrared emission from the disks have low linear resolution (35 au in the best case). Optical images provide higher resolution, but the closest examples (AU Mic and beta Pic) are edge-on, preventing the direct measurement of the azimuthal and radial disk structure that is required for fitting theoretical models of planetary perturbations. Here we report the detection of optical light reflected from the dust grains orbiting Fomalhaut (HD 216956). The system is inclined 24 degrees away from edge-on, enabling the measurement of disk structure around its entire circumference, at a linear resolution of 0.5 au. The dust is distributed in a belt 25 au wide, with a very sharp inner edge at a radial distance of 133 au, and we measure an offset of 15 au between the belt's geometric centre and Fomalhaut. Taken together, the sharp inner edge and offset demonstrate the presence of planetary-mass objects orbiting Fomalhaut.  相似文献   

12.
讨论了核子的“直接URCA”过程发生的条件,发现在UV14+UVⅡ态式描述的中子星物质中,核子的“直接URCA”过程发生的条件是质子数分数必须超过0.14;强调在中子昨丙“标准冷却”机制和“非标准冷却”机械可能同时存在;对几个没质量中子星的冷却过程的计算结果表明,引力 质量小于约1.6M的中子星核内应发生“标准冷却”过程,而在引力质量大于约1.6M的中子星核内可能存在2种冷却机制。  相似文献   

13.
Asphaug E  Agnor CB  Williams Q 《Nature》2006,439(7073):155-160
Terrestrial planet formation is believed to have concluded in our Solar System with about 10 million to 100 million years of giant impacts, where hundreds of Moon- to Mars-sized planetary embryos acquired random velocities through gravitational encounters and resonances with one another and with Jupiter. This led to planet-crossing orbits and collisions that produced the four terrestrial planets, the Moon and asteroids. But here we show that colliding planets do not simply merge, as is commonly assumed. In many cases, the smaller planet escapes from the collision highly deformed, spun up, depressurized from equilibrium, stripped of its outer layers, and sometimes pulled apart into a chain of diverse objects. Remnants of these 'hit-and-run' collisions are predicted to be common among remnant planet-forming populations, and thus to be relevant to asteroid formation and meteorite petrogenesis.  相似文献   

14.
Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.  相似文献   

15.
Stassun KG  Mathieu RD  Valenti JA 《Nature》2006,440(7082):311-314
Brown dwarfs are considered to be 'failed stars' in the sense that they are born with masses between the least massive stars (0.072 solar masses, M(o)) and the most massive planets (approximately 0.013M(o)); they therefore serve as a critical link in our understanding of the formation of both stars and planets. Even the most fundamental physical properties of brown dwarfs remain, however, largely unconstrained by direct measurement. Here we report the discovery of a brown-dwarf eclipsing binary system, in the Orion Nebula star-forming region, from which we obtain direct measurements of mass and radius for these newly formed brown dwarfs. Our mass measurements establish both objects as brown dwarfs, with masses of 0.054 +/- 0.005M(o) and 0.034 +/- 0.003M(o). At the same time, with radii relative to the Sun's of 0.669 +/- 0.034R(o) and 0.511 +/- 0.026R(o), these brown dwarfs are more akin to low-mass stars in size. Such large radii are generally consistent with theoretical predictions for young brown dwarfs in the earliest stages of gravitational contraction. Surprisingly, however, we find that the less-massive brown dwarf is the hotter of the pair; this result is contrary to the predictions of all current theoretical models of coeval brown dwarfs.  相似文献   

16.
Konacki M 《Nature》2005,436(7048):230-233
Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.  相似文献   

17.
18.
Kenyon SJ  Bromley BC 《Nature》2004,432(7017):598-602
The Kuiper belt extends from the orbit of Neptune at 30 au to an abrupt outer edge about 50 au from the Sun. Beyond the edge is a sparse population of objects with large orbital eccentricities. Neptune shapes the dynamics of most Kuiper belt objects, but the recently discovered planet 2003 VB12 (Sedna) has an eccentric orbit with a perihelion distance of 70 au, far beyond Neptune's gravitational influence. Although influences from passing stars could have created the Kuiper belt's outer edge and could have scattered objects into large, eccentric orbits, no model currently explains the properties of Sedna. Here we show that a passing star probably scattered Sedna from the Kuiper belt into its observed orbit. The likelihood that a planet at 60-80 au can be scattered into Sedna's orbit is about 50 per cent; this estimate depends critically on the geometry of the fly-by. Even more interesting is the approximately 10 per cent chance that Sedna was captured from the outer disk of the passing star. Most captures have very high inclination orbits; detection of such objects would confirm the presence of extrasolar planets in our own Solar System.  相似文献   

19.
Kalirai JS 《Nature》2012,486(7401):90-92
The Milky Way galaxy has several components, such as the bulge, disk and halo. Unravelling the assembly history of these stellar populations is often restricted because of difficulties in measuring accurate ages for low-mass, hydrogen-burning stars. Unlike these progenitors, white dwarf stars, the 'cinders' of stellar evolution, are remarkably simple objects and their fundamental properties can be measured with little ambiguity. Here I report observations of newly formed white dwarf stars in the halo of the Milky Way, and a separate analysis of archival data in the well studied 12.5-billion-year-old globular cluster Messier 4. I measure the mass distribution of the remnant stars and invert the stellar evolution process to develop a mathematical relation that links this final stellar mass to the mass of their immediate progenitors, and therefore to the age of the parent population. By applying this technique to a small sample of four nearby and kinematically confirmed halo white dwarf stars, I calculate the age of local field halo stars to be 11.4?±?0.7 billion years. The oldest globular clusters formed 13.5?billion years ago. Future observations of newly formed white dwarf stars in the halo could be used to reduce the uncertainty, and to probe relative differences between the formation times of the youngest globular clusters and the inner halo.  相似文献   

20.
采用三维N体模拟研究了在太阳星云盘中木星完全形成后土星核的快速形成.除了考虑太阳,木星及行星胚胎间的引力相互作用,还考虑了使行星胚胎发生Ⅰ型迁移和轨道圆化效应的气体盘潮汐作用.模拟表明:木星的平运动共振构型和行星Ⅰ型迁移大大地提高了行星胚胎的碰撞吸积率,同时木星的引力摄动有效地阻止大行星胚胎过快向内迁移而落入太阳中,最终在两百万年的时间内有可能在雪线之外靠近木星3:2平运动共振处吸积形成一颗土星核.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号