首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dipole mode in the tropical Indian Ocean   总被引:203,自引:0,他引:203  
For the tropical Pacific and Atlantic oceans, internal modes of variability that lead to climatic oscillations have been recognized, but in the Indian Ocean region a similar ocean-atmosphere interaction causing interannual climate variability has not yet been found. Here we report an analysis of observational data over the past 40 years, showing a dipole mode in the Indian Ocean: a pattern of internal variability with anomalously low sea surface temperatures off Sumatra and high sea surface temperatures in the western Indian Ocean, with accompanying wind and precipitation anomalies. The spatio-temporal links between sea surface temperatures and winds reveal a strong coupling through the precipitation field and ocean dynamics. This air-sea interaction process is unique and inherent in the Indian Ocean, and is shown to be independent of the El Ni?o/Southern Oscillation. The discovery of this dipole mode that accounts for about 12% of the sea surface temperature variability in the Indian Ocean--and, in its active years, also causes severe rainfall in eastern Africa and droughts in Indonesia--brightens the prospects for a long-term forecast of rainfall anomalies in the affected countries.  相似文献   

2.
Stott L  Cannariato K  Thunell R  Haug GH  Koutavas A  Lund S 《Nature》2004,431(7004):56-59
In the present-day climate, surface water salinities are low in the western tropical Pacific Ocean and increase towards the eastern part of the basin. The salinity of surface waters in the tropical Pacific Ocean is thought to be controlled by a combination of atmospheric convection, precipitation, evaporation and ocean dynamics, and on interannual timescales significant variability is associated with the El Ni?o/Southern Oscillation cycles. However, little is known about the variability of the coupled ocean-atmosphere system on timescales of centuries to millennia. Here we combine oxygen isotope and Mg/Ca data from foraminifers retrieved from three sediment cores in the western tropical Pacific Ocean to reconstruct Holocene sea surface temperatures and salinities in the region. We find a decrease in sea surface temperatures of approximately 0.5 degrees C over the past 10,000 yr, whereas sea surface salinities decreased by approximately 1.5 practical salinity units. Our data imply either that the Pacific basin as a whole has become progressively less salty or that the present salinity gradient along the Equator has developed relatively recently.  相似文献   

3.
Chang P  Fang Y  Saravanan R  Ji L  Seidel H 《Nature》2006,443(7109):324-328
El Ni?o, the most prominent climate fluctuation at seasonal-to-interannual timescales, has long been known to have a remote impact on climate variability in the tropical Atlantic Ocean, but a robust influence is found only in the northern tropical Atlantic region. Fluctuations in the equatorial Atlantic are dominated by the Atlantic Ni?o, a phenomenon analogous to El Ni?o, characterized by irregular episodes of anomalous warming during the boreal summer. The Atlantic Ni?o strongly affects seasonal climate prediction in African countries bordering the Gulf of Guinea. The relationship between El Ni?o and the Atlantic Ni?o is ambiguous and inconsistent. Here we combine observational and modelling analysis to show that the fragile relationship is a result of destructive interference between atmospheric and oceanic processes in response to El Ni?o. The net effect of El Ni?o on the Atlantic Ni?o depends not only on the atmospheric response that propagates the El Ni?o signal to the tropical Atlantic, but also on a dynamic ocean-atmosphere interaction in the equatorial Atlantic that works against the atmospheric response. These results emphasize the importance of having an improved ocean-observing system in the tropical Atlantic, because our ability to predict the Atlantic Ni?o will depend not only on our knowledge of conditions in the tropical Pacific, but also on an accurate estimate of the state of the upper ocean in the equatorial Atlantic.  相似文献   

4.
利用一个完全耦合的海气模式, 通过对比分析两组试验中海表温度、盐度、风应力等气候态变化特征以及ENSO强度和频率的变化, 研究热带太平洋气候平均态及年际变率对热盐环流减弱的响应。在北大西洋高纬地区注入1 Sv淡水后, 大西洋经向翻转流(AMOC)减弱约90%, 这直接导致向北的经向热量输送减少, 使北大西洋有明显降温, 南大西洋略有升温。这些变化会经过大气和海洋的远程传播以及局地海气反馈作用, 影响热带太平洋气候平均态: 赤道东西太平洋的SST都略有增温, 但纬向温度梯度和纬向风应力并没有太大变化, 赤道太平洋温跃层的深度和倾斜度也基本保持不变。相应地, ENSO强度和频率也没有明显变化。由此得出结论: 热盐环流减弱会引起全球气候平均态的变化, 但对热带太平洋的年际变率没有太大影响。  相似文献   

5.
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.  相似文献   

6.
SINCE THE 1990S, THE CLIMATIC VARIABILITY ON INTERDE- CADAL TIME SCALES BECAME THE FOCUS OF THE INTERNATIONAL CLIMATOLOGY RESEARCH MISSIONS[1―3]. ON TIME SCALES OF A DECADE OR MORE, THE OCEAN CIRCULATION PREDOMINATEDHEAT BALANCE AND HYDROLOGICAL CYCLE, S…  相似文献   

7.
年际和年代际气候变化的全球时空特征比较   总被引:18,自引:3,他引:18  
5利用1950-1998年全球海洋同化分析资料和全球大气再分析资料,分析比较了全球海气系统年际和年代际变化的主要时空特征。结果表明:1)全球上层海洋年际变化主要为位于热带太平洋的ENSO模态,年代际变化最显区域中纬度海洋、赤道外热带东太平洋和大西洋及南半球高纬度区域;2)全球大气年际和年代际变化均主要位于中高纬地区尤其是两极地区,在年际时间尺度上,气温异常和气压异常没有明显的对应关系,但在年代际时间尺度上,气温增暖(变冷)常常伴随着气压的降低(升高);3)在年际时间尺度上,发生在中高纬度陆地地区的大气年际变化和主要发生在热带海洋的上层海洋年际变化没有一致性的内在联系,前主要表现为大气内部(浑沌)变化,而后主要为热带海气相互作用产生的ENSO变化;4)在年代际时间尺度上,全球海洋大气系统大约在20世纪70年代均一致性地经历了一次跃变,其结果导致80年代以来,全球大范围地区(尤其是两极和西伯利亚地区)气温明显偏暖,赤道两侧的热带东太平洋、北美和南美西海岸及非洲西海岸等海域海表温度偏高,伴随着这种全球大范围背景增暖现象,青藏高原北部地区和格陵兰岛气温具有变冷趋势,而中纬度北太平洋和南半球高纬度海域海表温度也表现为降低。  相似文献   

8.
Visser K  Thunell R  Stott L 《Nature》2003,421(6919):152-155
Ocean-atmosphere interactions in the tropical Pacific region have a strong influence on global heat and water vapour transport and thus constitute an important component of the climate system. Changes in sea surface temperatures and convection in the tropical Indo-Pacific region are thought to be responsible for the interannual to decadal climate variability observed in extra-tropical regions, but the role of the tropics in climate changes on millennial and orbital timescales is less clear. Here we analyse oxygen isotopes and Mg/Ca ratios of foraminiferal shells from the Makassar strait in the heart of the Indo-Pacific warm pool, to obtain synchronous estimates of sea surface temperatures and ice volume. We find that sea surface temperatures increased by 3.5-4.0 degrees C during the last two glacial-interglacial transitions, synchronous with the global increase in atmospheric CO2 and Antarctic warming, but the temperature increase occurred 2,000-3,000 years before the Northern Hemisphere ice sheets melted. Our observations suggest that the tropical Pacific region plays an important role in driving glacial-interglacial cycles, possibly through a system similar to how El Ni?o/Southern Oscillation regulates the poleward flux of heat and water vapour.  相似文献   

9.
LU Riyu 《科学通报(英文版)》2005,50(18):2069-2073
The rainfall in North China during rainy season (July and August (JA)) exhibits a strong interannual variability. In this study, the atmospheric circulation and SST anomalies associated with the interannual variation of JA North China rainfall are examined. It is found that on the interannual timescale, the JA North China rainfall is associated with significant SST anomalies in the equatorial eastern Pacific, and the North China rainfall and SST anomaly in the equatorial eastern Pacific correspond to the similar variation of the upper-level westerly jet stream over East Asia. A possible mechanism is proposed for the influence of the SST anomalies in the equatorial eastern Pacific on the North China rainfall.  相似文献   

10.
Leduc G  Vidal L  Tachikawa K  Rostek F  Sonzogni C  Beaufort L  Bard E 《Nature》2007,445(7130):908-911
Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean and contributes to the formation of North Atlantic Deep Water. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events-millennial-scale abrupt warm and cold events, respectively, during the last glacial period. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/Oeschger interstadials, with opposite changes for Heinrich events. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both temperature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin. We conclude that millennial-scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation.  相似文献   

11.
There is the significant period of tropospheric biennial Oscillation(TBO)over East Asian monsoon region at the interannual timescales,which has the important influences on East China climate.Based on a set of reconstructed indices which describes the western Pacific subtropical high(WPSH)objectively,this paper focuses on the TBO component of WPSH,one of the key members of the East Asian Monsoon system,and its relationships with the tropical SST and atmospheric circulation anomalies.It is found that(1)As an important interannual component of WPSH,the time series of TBO has the obvious transition in the late1970s,and the variability of the WPSH’s TBO component is more significant after the late 1970s.(2)The time-lag correlations between the WPSH’s TBO and the tropical sea surface temperature(SST)anomalies in several key ocean regions are more significant and have longer correlation duration than the raw data.The response of the western boundary index to ENSO is earlier than the intensity index,and the time-lag correlations of them are up to maximum when lagging ENSO by 3–5 months and 5–6months,respectively.(3)In the course of the WPSH’s TBO cycle,the occurrence of the El Ni o-like anomaly in the tropical central-eastern Pacific in winter is always coupled with the weak East Asian winter monsoon,with the most significant enhancing phase of the WPSH’TBO.In contrast,the La Ni a-like anomaly in the central-eastern Pacific in winter is coupled with the strong East Asian winter monsoon,with the most weakening phase of the WPSH’s TBO.(4)The distribution of the tropical SST and atmospheric circulations anomalies are asymmetric in the TBO cycle.The WPSH’s TBO is more significant in the period of the developing El Ni o-like anomaly in central-eastern Pacific than in the period of the developing La Ni a-like anomaly.Therefore,during the period of developing El Ni o-like anomaly,more attention should be paid to the interannual component of TBO signal in the short-term climate prediction.  相似文献   

12.
Advancing decadal-scale climate prediction in the North Atlantic sector   总被引:12,自引:0,他引:12  
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.  相似文献   

13.
对1951-1999年中国夏季江淮流域降水异常与海温异常关系的分析表明,前期及同期各季节三大洋海表温度异常(SSTA)与长江流域降水异常的关系是非常显著的,而对淮河流域降水异常总体上的影响较小,前期冬季SSTA的影响显著区主要有:热带印度洋、黑潮、热带中东太平洋和大西洋,各关键区海温异常对亚洲夏季风的影响特征为:当前期冬季赤道印度洋、黑潮、赤道大西洋和热带东太平洋海表温度异常升高(降低),当年夏季印度西南季风和东亚热带辐合带减弱(加强),副热带高压位置偏南(北),副热带辐合带加强(减弱),长江流域易发生洪涝(干旱),相关显著性分析表明,前冬赤道印度洋和黑潮区的海温异常对中国夏季降水的影响更为显著。  相似文献   

14.
Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98   总被引:63,自引:0,他引:63  
Webster PJ  Moore AM  Loschnigg JP  Leben RR 《Nature》1999,401(6751):356-360
Climate variability in the Indian Ocean region seems to be, in some aspects, independent of forcing by external phenomena such as the El Ni?o/Southern Oscillation. But the extent to which, and how, internal coupled ocean-atmosphere dynamics determine the state of the Indian Ocean system have not been resolved. Here we present a detailed analysis of the strong seasonal anomalies in sea surface temperatures, sea surface heights, precipitation and winds that occurred in the Indian Ocean region in 1997-98, and compare the results with the record of Indian Ocean climate variability over the past 40 years. We conclude that the 1997-98 anomalies--in spite of the coincidence with the strong El Ni?o/Southern Oscillation event--may primarily be an expression of internal dynamics, rather than a direct response to external influences. We propose a mechanism of ocean-atmosphere interaction governing the 1997-98 event that may represent a characteristic internal mode of the Indian Ocean climate system. In the Pacific Ocean, the identification of such a mode has led to successful predictions of El Ni?o; if the proposed Indian Ocean internal mode proves to be robust, there may be a similar potential for predictability of climate in the Indian Ocean region.  相似文献   

15.
Surface-and subsurface-dwelling planktonic foraminifera from the upper 43 m of Hole A at the Ocean Drilling Program (ODP) Site 807,which was recovered from the western Pacific warm pool during ODP Leg 130,were analyzed for stable oxygen and carbon isotopes.By comparing these results with data from ODP Site 851 in the eastern equatorial Pacific,this study has reconstructed the paleoceanographic changes in upper ocean waters in the equatorial Pacific since 2.5 Ma.During the period from 1.6-1.4 Ma,the oxygen isotopes of surface and subsurface waters were found to markedly change in the western and eastern equatorial Pacific,further confirming the final formation of the well-defined asymmetric east-west (E-W) pattern at that time.This feature was similar to the zonal temperature gradient (sea surface temperature is higher in the west and lower in the east) and the asymmetric upper water structure (thermocline depth is deeper in the west and shallower in the east) in the modern equatorial Pacific.The zonal gradient change of subsurface water δ18O was greater than that of surface water δ18O,indicating that the formation of the asymmetric E-W pattern in the equatorial Pacific should be much more related to the shoaled thermocline and markedly decreased subsurface water temperature in the eastern equatorial Pacific.Moreover,since ~1.6 Ma,the carbon isotopic differences between surface and subsurface waters clearly decreased in the equatorial Pacific,and their long-term eccentricity periods changed from 400 ka to ~500 ka,reflecting the reorganization of the ocean carbon reservoir.This probably resulted from the deep water reorganization in the Southern Ocean at that time and its enhanced influence on the tropical Pacific (especially subsurface water).Our study demonstrates that the tropical ocean plays an important role in global climate change.  相似文献   

16.
The El Ni?o/Southern Oscillation (ENSO) system during the Pliocene warm period (PWP; 3-5 million years ago) may have existed in a permanent El Ni?o state with a sharply reduced zonal sea surface temperature (SST) gradient in the equatorial Pacific Ocean. This suggests that during the PWP, when global mean temperatures and atmospheric carbon dioxide concentrations were similar to those projected for near-term climate change, ENSO variability--and related global climate teleconnections-could have been radically different from that today. Yet, owing to a lack of observational evidence on seasonal and interannual SST variability from crucial low-latitude sites, this fundamental climate characteristic of the PWP remains controversial. Here we show that permanent El Ni?o conditions did not exist during the PWP. Our spectral analysis of the δ(18)O SST and salinity proxy, extracted from two 35-year, monthly resolved PWP Porites corals in the Philippines, reveals variability that is similar to present ENSO variation. Although our fossil corals cannot be directly compared with modern ENSO records, two lines of evidence suggest that Philippine corals are appropriate ENSO proxies. First, δ(18)O anomalies from a nearby live Porites coral are correlated with modern records of ENSO variability. Second, negative-δ(18)O events in the fossil corals closely resemble the decreases in δ(18)O seen in the live coral during El Ni?o events. Prior research advocating a permanent El Ni?o state may have been limited by the coarse resolution of many SST proxies, whereas our coral-based analysis identifies climate variability at the temporal scale required to resolve ENSO structure firmly.  相似文献   

17.
Urban FE  Cole JE  Overpeck JT 《Nature》2000,407(6807):989-993
Today, the El Ni?o/Southern Oscillation (ENSO) system is the primary driver of interannual variability in global climate, but its long-term behaviour is poorly understood. Instrumental observations reveal a shift in 1976 towards warmer and wetter conditions in the tropical Pacific, with widespread climatic and ecological consequences. This shift, unique over the past century, has prompted debate over the influence of increasing atmospheric concentrations of greenhouse gases on ENSO variability. Here we present a 155-year ENSO reconstruction from a central tropical Pacific coral that provides new evidence for long-term changes in the regional mean climate and its variability. A gradual transition in the early twentieth century and the abrupt change in 1976, both towards warmer and wetter conditions, co-occur with changes in variability. In the mid-late nineteenth century, cooler and drier background conditions coincided with prominent decadal variability; in the early twentieth century, shorter-period (approximately 2.9 years) variability intensified. After 1920, variability weakens and becomes focused at interannual timescales; with the shift in 1976, variability with a period of about 4 years becomes prominent. Our results suggest that variability in the tropical Pacific is linked to the region's mean climate, and that changes in both have occurred during periods of natural as well as anthropogenic climate forcing.  相似文献   

18.
Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum--marked in the drill core by continuous deposition of lacustrine sediments--appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.  相似文献   

19.
The relationship between sea surface temperature anomaly (SSTA) and wind energy input in the Pacific Ocean over the period of 1949–2003 is studied by using daily-mean NOAA/NCEP wind stress and monthly mean Reynolds SST data. The results indicate the strong negative correlation between SSTA and local wind energy input to surface waves in most of the domain at low and middle latitudes. The SST is low (high) during the years with more (less) wind energy input. The correlation coefficients are high in the central and eastern tropical Pacific and the central midlatitude North Pacific at the decadal scale, and in the central tropical Pacific at the interannual scale. Vertical mixing processes in the upper ocean are closely associated with wind energy input, indicating that wind energy input may play an important role in interannual and decadal variability in the Pacific Ocean via regulating vertical mixing.  相似文献   

20.
Wang  Jing  He  JinHai  Liu  XuanFei  Wu  BinGui 《科学通报(英文版)》2009,54(4):687-695
Meiyu onset (MO) over Yangtze-Huaihe River Valley (YHRV) possesses obvious characteristics of interannual variations. Based on NCEP/NCAR reanalysis data sets, NOAA OLR and ERSST data, the in-terannual variability of MO(IVMO) and its previous strong influence signal (PSIS) are investigated. The possible mechanisms that the PSIS affecting IVMO are also discussed. The results show that the pre-vious CP-ENSO (Central Pacific El Nio/Southern Oscillation) event is the PSIS affecting IVMO and it has a better accu...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号