首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Widespread changes in protein synthesis induced by microRNAs   总被引:3,自引:0,他引:3  
Animal microRNAs (miRNAs) regulate gene expression by inhibiting translation and/or by inducing degradation of target messenger RNAs. It is unknown how much translational control is exerted by miRNAs on a genome-wide scale. We used a new proteomic approach to measure changes in synthesis of several thousand proteins in response to miRNA transfection or endogenous miRNA knockdown. In parallel, we quantified mRNA levels using microarrays. Here we show that a single miRNA can repress the production of hundreds of proteins, but that this repression is typically relatively mild. A number of known features of the miRNA-binding site such as the seed sequence also govern repression of human protein synthesis, and we report additional target sequence characteristics. We demonstrate that, in addition to downregulating mRNA levels, miRNAs also directly repress translation of hundreds of genes. Finally, our data suggest that a miRNA can, by direct or indirect effects, tune protein synthesis from thousands of genes.  相似文献   

2.
用AFM直接现场观察、体外表达等实验技术组合,观察到小白鼠(Balb/c)心肌核DNA片段的基因在体外表达过程中形成的n mRNA(n=9)线型链状复合体,处于垃圾DNA片段的特定的“翻译平台”上,其每种mRNA两端非共价键分别结合自己编码蛋白质(即分子开关),中间的编码序列均非共价结合完全可解离的翻译活性因子等多种蛋白质:这些蛋白质可能均由垃圾DNA片段的极复杂的立体结构所形成的、匹配协同的、专一性蛋白质通路所调控,该通路对蛋白质按顺序分别进行特异性双向调控.核内n mRNA线型链状复合体在体外可翻译出LDH等蛋白质,并显示n mRNA翻译的“群体效应”.用AFM还观察到胞质制取的n mRNA(n=12)线型链状复合体(无垃圾DNA存在),体外翻译出少量LDH等蛋白质,并显示n mRNA翻译的"群体效应".本工作展示了未来运用AFM观察体外表达等生物学反应,研究基因表达与调控机制及其与垃圾DNA相互作用的前景.  相似文献   

3.
Reversible inhibition of translation by Xenopus oocyte-specific proteins   总被引:2,自引:0,他引:2  
J D Richter  L D Smith 《Nature》1984,309(5966):378-380
A characteristic of growing oocytes of all animal species is the synthesis and accumulation of messenger RNA which is destined to be used primarily by the early embryo. The mechanism(s) which regulates the translation of this maternal mRNA remains unknown. However, the inability of the oocyte to translate all of its putative mRNA has been attributed to at least three limitations: (1) The rate of translation is limited by the availability of components of the translational apparatus other than mRNA, (2) the structural organization of the mRNA prevents translation, and (3) proteins associated with the mRNA prevent translation. Several investigators have suggested that proteins associated with maternal mRNA suppress translation in sea urchin eggs, although others claim that such results may be due to experimental artefacts. Oocyte-specific proteins have been identified in association with non-translating poly(A)+ mRNAs from Xenopus laevis oocytes, and we report here that when these proteins are reconstituted with mRNAs in vitro the translation of the mRNAs in vitro is reversibly repressed. The implication is that these proteins are involved in the regulation of translation of stored maternal mRNAs.  相似文献   

4.
Global analysis of protein expression in yeast   总被引:2,自引:0,他引:2  
  相似文献   

5.
6.
Protein-protein interaction is a physical interaction of two proteins in living cells. In budding yeast Saccharomyces cerevisiae, large-seale protein-protein interaction data have been obtained through high-throughput yeast two-hybrid systems (Y2H) and protein complex purification techniques based on mass-spectrometry. Here, we collect 11855 interactions between total 2617 proteins. Through seriate genome-wide mRNA expression data, similarity between two genes could be measured. Protein complex data can also be obtained publicly and can be translated to pair relationship that any two proteins can only exist in the same complex or not. Analysis of protein complex data, protein-protein interaction data and mRNA expression data can elucidate correlations between them. The results show that proteins that have interactions or similar expression patterns have a higher possibility to be in the same protein complex than randomized selected proteins, and proteins which have interactions and similar expression patterns are even more possible to exist in the same protein complex. The work indirates that comprehensive integration and analysis of public large-seale bioinformatical data, such as protein complex data, protein-protein interaction data and mRNA expression data, may help to uncover their relationships and common biological information underlying these data. The strategies described here may help to integrate and analyze other functional genomic and proteomic data, such as gene expression profiling, protein-localization mapping and large-scale phenotypic data, both in yeast and in other organisms.  相似文献   

7.
8.
Qu X  Wen JD  Lancaster L  Noller HF  Bustamante C  Tinoco I 《Nature》2011,475(7354):118-121
The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs.  相似文献   

9.
10.
Yusupova G  Jenner L  Rees B  Moras D  Yusupov M 《Nature》2006,444(7117):391-394
Translation initiation is a major determinant of the overall expression level of a gene. The translation of functionally active protein requires the messenger RNA to be positioned on the ribosome such that the start/initiation codon will be read first and in the correct frame. Little is known about the molecular basis for the interaction of mRNA with the ribosome at different states of translation. Recent crystal structures of the ribosomal subunits, the empty 70S ribosome and the 70S ribosome containing functional ligands have provided information about the general organization of the ribosome and its functional centres. Here we compare the X-ray structures of eight ribosome complexes modelling the translation initiation, post-initiation and elongation states. In the initiation and post-initiation complexes, the presence of the Shine-Dalgarno (SD) duplex causes strong anchoring of the 5'-end of mRNA onto the platform of the 30S subunit, with numerous interactions between mRNA and the ribosome. Conversely, the 5' end of the 'elongator' mRNA lacking SD interactions is flexible, suggesting a different exit path for mRNA during elongation. After the initiation of translation, but while an SD interaction is still present, mRNA moves in the 3'-->5' direction with simultaneous clockwise rotation and lengthening of the SD duplex, bringing it into contact with ribosomal protein S2.  相似文献   

11.
Amrani N  Ganesan R  Kervestin S  Mangus DA  Ghosh S  Jacobson A 《Nature》2004,432(7013):112-118
Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3'-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3'-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3'-UTR.  相似文献   

12.
13.
Burns DM  D'Ambrogio A  Nottrott S  Richter JD 《Nature》2011,473(7345):105-108
Cytoplasmic polyadenylation-induced translation controls germ cell development, neuronal synaptic plasticity and cellular senescence, a tumour-suppressor mechanism that limits the replicative lifespan of cells. The cytoplasmic polyadenylation element binding protein (CPEB) promotes polyadenylation by nucleating a group of factors including defective in germline development 2 (Gld2), a non-canonical poly(A) polymerase, on specific messenger RNA (mRNA) 3' untranslated regions (UTRs). Because CPEB regulation of p53 mRNA polyadenylation/translation is necessary for cellular senescence in primary human diploid fibroblasts, we surmised that Gld2 would be the enzyme responsible for poly(A) addition. Here we show that depletion of Gld2 surprisingly promotes rather than inhibits p53 mRNA polyadenylation/translation, induces premature senescence and enhances the stability of CPEB mRNA. The CPEB 3' UTR contains two miR-122 binding sites, which when deleted, elevate mRNA translation, as does an antagomir of miR-122. Although miR-122 is thought to be liver specific, it is present in primary fibroblasts and destabilized by Gld2 depletion. Gld4, a second non-canonical poly(A) polymerase, was found to regulate p53 mRNA polyadenylation/translation in a CPEB-dependent manner. Thus, translational regulation of p53 mRNA and cellular senescence is coordinated by Gld2/miR-122/CPEB/Gld4.  相似文献   

14.
MicroRNA silencing through RISC recruitment of eIF6   总被引:1,自引:0,他引:1  
  相似文献   

15.
A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA   总被引:1,自引:0,他引:1  
Martick M  Horan LH  Noller HF  Scott WG 《Nature》2008,454(7206):899-902
  相似文献   

16.
Nalley K  Johnston SA  Kodadek T 《Nature》2006,442(7106):1054-1057
Transactivator-promoter complexes are essential intermediates in the activation of eukaryotic gene expression. Recent studies of these complexes have shown that some are quite dynamic in living cells owing to rapid and reversible disruption of activator-promoter complexes by molecular chaperones, or a slower, ubiquitin-proteasome-pathway-mediated turnover of DNA-bound activator. These mechanisms may act to ensure continued responsiveness of activators to signalling cascades by limiting the lifetime of the active protein-DNA complex. Furthermore, the potency of some activators is compromised by proteasome inhibition, leading to the suggestion that periodic clearance of activators from a promoter is essential for high-level expression. Here we describe a variant of the chromatin immunoprecipitation assay that has allowed direct observation of the kinetic stability of native Gal4-promoter complexes in yeast. Under non-inducing conditions, the complex is dynamic, but on induction the Gal4-promoter complexes 'lock in' and exhibit long half-lives. Inhibition of proteasome-mediated proteolysis had little or no effect on Gal4-mediated gene expression. These studies, combined with earlier data, show that the lifetimes of different transactivator-promoter complexes in vivo can vary widely and that proteasome-mediated turnover is not a general requirement for transactivator function.  相似文献   

17.
RNA可以单独或者通过与其它蛋白因子的相互作用参与基因表达的调控。在转录前水平,RNA分子可以通过介导DNA的甲基化或异染色质的形成来调控基因表达;在转录水平,RNA分子通过直接与转录因子或RNA聚合酶相互作用来调控基因表达;在转录后水平,RNA利用由siRNA和microRNA介导的RNA干扰机制,通过降解目标mRNA或阻碍目标基因的翻译来沉默基因的表达。此外,mRNA还可以通过感知环境中代谢物的浓度,通过形成核糖开关(riboswitch)来调控基因的表达;反义RNA可以从复制、转录和翻译3个水平上调控基因的表达。  相似文献   

18.
The impact of microRNAs on protein output   总被引:2,自引:0,他引:2  
Baek D  Villén J  Shin C  Camargo FD  Gygi SP  Bartel DP 《Nature》2008,455(7209):64-71
MicroRNAs are endogenous approximately 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3' untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.  相似文献   

19.
Li GW  Oh E  Weissman JS 《Nature》2012,484(7395):538-541
  相似文献   

20.
Seelig B  Szostak JW 《Nature》2007,448(7155):828-831
Enzymes are exceptional catalysts that facilitate a wide variety of reactions under mild conditions, achieving high rate-enhancements with excellent chemo-, regio- and stereoselectivities. There is considerable interest in developing new enzymes for the synthesis of chemicals and pharmaceuticals and as tools for molecular biology. Methods have been developed for modifying and improving existing enzymes through screening, selection and directed evolution. However, the design and evolution of truly novel enzymes has relied on extensive knowledge of the mechanism of the reaction. Here we show that genuinely new enzymatic activities can be created de novo without the need for prior mechanistic information by selection from a naive protein library of very high diversity, with product formation as the sole selection criterion. We used messenger RNA display, in which proteins are covalently linked to their encoding mRNA, to select for functional proteins from an in vitro translated protein library of >10(12 )independent sequences without the constraints imposed by any in vivo step. This technique has been used to evolve new peptides and proteins that can bind a specific ligand, from both random-sequence libraries and libraries based on a known protein fold. We now describe the isolation of novel RNA ligases from a library that is based on a zinc finger scaffold, followed by in vitro directed evolution to further optimize these enzymes. The resulting ligases exhibit multiple turnover with rate enhancements of more than two-million-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号