首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
降雨和库水位的升降对三峡库区滑坡稳定性有重要影响.根据饱和非饱和土的渗流理论及极限平衡原理方法,采用加拿大岩土有限元软件Geo-Studio,对白水河滑坡在多种工况下的渗流场及稳定性进行计算,包括在库水位175m~145m波动下,6种设计工况和2015年实际工况.通过对白水河滑坡稳定性计算结果及现有的监测数据综合分析,表明白水河滑坡稳定性同时受库水位波动和降雨入渗影响,库水位消落是滑坡变形的主要因素.计算分析结果为三峡库区涉水滑坡变形机理研究及预测提供一定的参考.  相似文献   

2.
水库型滑坡主要受库水位升降变化而发生变形,因此对水库滑坡的研究主要集中在库水变动影响下的滑坡变形机理及稳定性分析方面.然而通过对三峡库区滑坡调查发现,有一类水库滑坡变形主要受降雨影响,而研究这类滑坡在降雨和库水共同作用下的变形及稳定性同样具有重要意义.本文以三峡库区某水库滑坡为例,在详细调查该滑坡地质条件及变形发展过程基础上,运用数值模拟方法对其渗流场及稳定性进行了定量分析.结果表明,该滑坡由于特殊的地形条件,其变形主要受降雨影响,受库水位升降影响较小.  相似文献   

3.
汛期强降雨对水动力型滑坡堆积体渗流稳定性有着重要影响.本文结合三板溪水电站库区东岭信滑坡堆积体工程,揭示了正常蓄水位条件下降雨入渗对深厚滑坡堆积体孔隙水压力变化的影响机理,开展了不同工况下滑坡堆积体渗流稳定性数值分析.数值计算结果表明,滑坡堆积体前缘局部稳定性主要受库水位和降雨入渗联合作用;滑坡堆积体中后部稳定性主要受降雨入渗影响,受库水位影响不明显,因此,汛期强降雨是影响深厚滑坡堆积体整体稳定性的关键因素,设置排水洞可有效提高东岭信滑坡堆积体整体稳定性.研究结果可为类似水动力型堆积体滑坡灾害治理与防范提供参考.  相似文献   

4.
库水作用下三峡库区某库岸堆积体稳定性研究   总被引:4,自引:0,他引:4  
三峡库区某库岸堆积体被认为是库水作用下的潜在滑坡之一.采用了GEO—seep、GEO—sigma及GEO—slope通用计算程序,对三峡水库水位升降的一系列工况下该堆积体的饱和一非饱和渗流场的变化、变形破坏机理及稳定安全系数进行了计算分析.计算结果表明,随着水库蓄水位的增加,该堆积体的稳定性会相应降低,库水骤降为其稳定性最为不利的工况.由计算分析推断该堆积体为一潜在水库新生型堆积体滑坡.  相似文献   

5.
库区滑坡的稳定性受库水涨落影响较大,为了分析库水位变动对滑坡稳定的影响,基于非饱和理论的有限元软件进行数值模拟,并需要用到非饱和土的相关参数,特别是土水特征曲线对滑坡稳定性的计算结果影响较大.文中一个实际算例采用不同土-水特征曲线时,计算所得结果相差较大,为了探究土-水特征曲线对滑坡影响的大小及原因,计算了当滑坡土体饱和含水量、饱和渗透系数相同时,3种典型土的土-水特征曲线所对应的稳定性系数,并得到以下结论:库水的升降作用对非饱和土质滑坡的稳定性有较大影响;由黏性土质滑坡的土体特性及计算说明表明:黏性土质滑坡在库水位变动作用下较粉土及砂土滑坡稳定,土-水特征曲线对考虑非饱和特性的滑坡安全系数影响较大,即同一含水率条件下基质吸力越大的土体滑坡的稳定性越好.  相似文献   

6.
研究库水位动态变化时陡倾软弱顺层岩质滑坡的变形机制,为库岸滑坡防治及库水调度提供帮助。以四川省大渡河某水电站开顶滑坡为例,通过野外调查资料、库水位及地面监测数据综合分析,研究滑坡结构及变形破坏特征;建立二维地质模型,利用离散元模拟蓄水前后陡倾顺层岩质滑坡变形响应过程,结合有限元进一步分析库水作用下岸坡稳定性变化规律。研究结果表明,岸坡特殊的地质构造和岩性是控制滑坡产生的主要因素,水库蓄水诱发了滑坡的变形,库水位变化进一步加速了变形进程。当库水位以4.8 m/d、3.84 m/d、1.92 m/d的速率上升时,坡体稳定性呈现先增后减的趋势;当以小于0.5 m/d的速率下降时,岸坡变形不明显,但稳定性急剧降低,极有可能增加变形速率,加剧变形,导致大范围失稳破坏。在水库调度过程中,为避免渗流作用对岸坡稳定性的影响,库水位变化应保持在较小的速率平稳运行。  相似文献   

7.
通过强度折减法对水位骤升骤降下的灰坝渗流应力耦合稳定性进行有限元分析,经计算发现:渗流相比无渗流工况,坝体安全系数降低明显;水位上升,灰坝安全系数降低。而正交试验研究渗流作用下子坝对灰坝整体稳定性的影响情况发现:在渗流作用下,子坝的重度γ对灰坝整体稳定性影响最显著,安全系数随子坝重度γ增大而减小。  相似文献   

8.
大中型水库的兴建形成了大量的涉水岸坡,库水水位的波动将对这些岸坡的稳定性产生影响,可能诱发滑坡甚至形成地质灾害,也将引起岸坡体内地下水的非稳态渗流,因此其稳定性分析变得十分复杂.文章通过实际算例,并结合有限元强度折减法,分析了影响涉水岸坡稳定性的因素,结果表明,有限元边界范围、渗流方向对涉水岸坡的稳定性有明显的影响;概化浸润面位置的差异是造成稳定性分析误差的主要原因.  相似文献   

9.
研究降雨和库水位升降工况下三峡库岸堆积层滑坡的稳定性.运用二维有限元数值模拟的方法对三峡库岸白龙村滑坡进行瞬态和稳态渗流计算并进行稳定性计算,计算结果表明,白龙村滑坡在库水位上升期间存在一个稳定性较低的水位(159m左右),但之后稳定性升高.在库水位下降期间,稳定性降低.降雨对白龙村滑坡稳定性的影响较大.由此总结出了库岸滑坡稳定性交化的一些初步规律.  相似文献   

10.
流固耦合作用下节理岩质边坡失稳过程的RFPA模拟分析   总被引:1,自引:0,他引:1  
利用基于强度折减法的RFPA-Slope对渗流与应力耦合作用下的软弱互层岩质边坡稳定性进行了数值模拟分析,数值模拟不但直观形象地给出了边坡的渗流场、应力场、破坏区分布,而且得到了边坡滑移破坏面的萌生、扩展、贯通以及坡体整体失稳的渐进破坏过程,同时求得安全系数.并与无地下水的稳定性作了比较,结果表明,地下水渗流的作用使坡体位移增大,边坡安全系数减小,明显加大了滑坡范围.对实例的分析说明,RFPA-Slope能够较为准确地预测边坡潜在破坏面的形状与位置及计算相应的稳定安全系数,本文方法对于边坡,特别是对于复杂边坡的稳定性分析具有实用性.  相似文献   

11.
运用有限元软件ABAQUS模拟降雨条件下边坡渗流场和应力场耦合,并运用强度折减法,以监控点位移突变和边坡形成连续贯通的塑性变形为边坡失稳判据,采用数值方法计算出耦合后的安全系数,结合孔压演变分析,综合评价稳定性变化情况,从而研究降雨影响边坡稳定性的机理,并通过含黏土层边坡工程实例进行验证.分析发现:降雨强度越大,浅层土体形成饱和区的速度越快,极易发生浅层滑坡,而黏土层则会加速上述过程,危害边坡稳定性;在降雨24h内,安全系数降幅最大.该研究结果为降雨条件下边坡事故防治提供了参考和分析依据.  相似文献   

12.
研究库水位升降过程中某水电站溢洪道开挖边坡渗流场的变化规律及对其稳定性的影响,为该边坡加固设计提供参考.本文采用GeoStudio软件中的SEEP/W模块对边坡渗流场变化规律进行模拟分析,主要考虑了边坡的开挖、库水位升降速率、岩土体渗透系数对渗流场的影响;采用SLOPE/W模块对边坡的稳定性进行了分析,研究了渗流场变化对边坡稳定性的影响.研究表明:库水位升降过程中边坡内部浸润线的升降滞后于库水位升降;库水位上升过程中边坡安全系数先减小后趋于稳定,且上升速率大时边坡安全系数减小快;库水位下降过程中边坡安全系数减小,且下降速率大时边坡安全系数减小快,对其稳定不利.  相似文献   

13.
三峡水库长期运行后,库水作用使土质岸坡变形破坏加剧,甚至导致滑坡复活。受库水位变动影响和波浪作用,秭归淹锅沙坝滑坡前缘不断发生塌岸,且滑坡变形对前缘塌岸响应较为明显。因此以该滑坡为例,基于地表宏观变形、全球定位系统(global positioning system, GPS)位移数据,深部位移监测等数据,分析淹锅沙坝滑坡的变形机制。为进一步探索前缘塌岸对滑坡变形的影响机理。采用GeoStudio软件,基于生死单元技术实现不同坡面形态的淹锅沙坝滑坡的数值模拟,分析原始形态、当前坡形、塌岸发展后等不同坡面形态滑坡渗流场,应力场,位移场的变化规律。结果表明:淹锅沙坝滑坡左侧整体变形较大;受库水作用影响,滑坡前缘发生塌岸,塌岸侧中前部的GPS监测点位移量随之增大,因而塌岸对滑坡整体稳定性有一定影响。数值模拟结果表明:淹锅沙坝滑坡是动水压力型滑坡;不同坡形渗流场结果变化较小;滑坡前缘的水平向应力分布会随坡形变化而变化,进而影响滑坡的位移变形和整体稳定性;当前坡形发生塌岸后,前缘的水平方向应力值增大,位移量随之增大,滑坡整体稳定性下降;数值模拟结果与实际变形情况一致。GeoStudio软件可以较...  相似文献   

14.
刘晶 《科学技术与工程》2024,24(12):4876-4886
为探讨涉水滑坡受水位升降及降雨作用变形机制及稳定性影响, 以贵州平塘六硐南岸滑坡为研究对象,通过野外调查及现场监测,分析滑坡灾害产生的地质背景和变形特征。基于非饱和渗流理论和极限平衡分析,运用有限元软件Geo-studio,计算滑坡在673~685 m水位波动和降雨作用不同工况组合下的稳定系数,得到渗流场、应力场和位移场的变化规律,探明滑坡变形迹象及破坏机制。结果表明:该滑坡累计位移曲线呈现“阶跃状”特征,变形与河流水位变化、强降雨在时间上存在对应关系;雨强增大会降低滑坡稳定性,雨停滞后一定时间稳定性恢复;水位上升和下降,分别会使坡体稳定性增加和降低,且升降速率越大,稳定性变化程度越明显;水位下降和降雨联合作用为最不利工况,正是因为2020年7—9月坡体历经2次最不利工况,导致滑坡复活并且变形加剧。研究成果可为山区河岸滑坡防灾减灾提供一定参考。  相似文献   

15.
为了探究地下水和降雨入渗对边坡稳定性的影响,在分析强度折减法原理和渗流-应力耦合机理的基础上,建立了渗流-应力耦合数学模型;运用有限元数值模拟软件ABAQUS,计算出无地下水、有地下水以及地下水和降雨入渗共同作用三种工况下的边坡安全系数,并探讨了不同粘聚力、内摩擦角、弹性模量、泊松比、渗透系数、水头高度、降雨时间和降雨强度对边坡稳定性的影响。计算结果表明:地下水和降雨入渗会对边坡稳定性产生较大不利影响;边坡安全系数随粘聚力和内摩擦角的增大而增大,随水头高度、降雨时间和降雨强度增大而减小;而弹性模量、泊松比、各向同性的渗透系数对边坡安全系数几乎没有影响。  相似文献   

16.
渗透系数与库水位变化对边坡稳定性的影响   总被引:11,自引:0,他引:11  
针对水利工程中复杂的库岸工程地质条件,以及库水位的变化对库岸边坡的稳定性会产生各种不利影响的实际,对不同渗透系数土质边坡在库水位下降速率变化下的稳定性进行了数值计算和分析,计算了在库水位下降期间,不同渗透系数滑坡体的稳定性受库水位下降速率影响的变化规律.结合库水位下降期间不同渗透系数滑坡体的渗流场,对滑坡体的稳定性进行了数值计算分析,得到了库区降水速率和渗透系数与边坡稳定性之间的关系.结果表明:对于同种材料的滑坡体,降水速率越快,滑坡体达到最低安全系数所需的时间就越短,且水位下降到同一位置时,降水速率越快,库岸的安全系数就越低,越可能发生滑坡;相同渗透系数的滑坡体在不同降水速率下其稳定性的变化曲线都是相似的.  相似文献   

17.
金沙江乌东德水电站金坪子滑坡的稳定性对于该水电站的安全运行具有重要意义.为探究地震作用对金坪子滑坡体稳定性的影响,以金坪子滑坡Ⅱ区为例,在滑坡地质模型研究的基础上,运用极限平衡法及动力时程分析法,通过研究滑坡稳定性系数以及滑坡位移、速度、加速度曲线变化,综合研究了滑坡体在天然与加速度峰值为0.1g地震两种状态下的稳定性.分析表明:地震作用下坡体安全系数小于0.8,证明坡体在遭遇地震时可能发生失稳;坡体对地震作用的响应存在一个高程放大效应,坡体变形强度随高程增加而增大;经计算,地震变形峰值发生在6 s时刻,滑坡体最终永久变形位移达26 cm;地震作用下坡体变形的振幅呈循环往复变化,导致坡体内惯性力呈往返运动,降低了岩土体之间摩擦力导致产生的弧形破坏,同时在运动过程中为地下水渗入提供了路径,降低了坡体的稳定性.本文分析成果对研究同类坡体变形具有一定借鉴意义.  相似文献   

18.
暴雨和久雨是影响滑坡稳定性的重要因素.选取东岭信滑坡堆积体典型剖面,研究其在降雨条件下的稳定性演化机制.基于非饱和渗流基本理论研究了相同雨量、不同雨型下堆积体的渗流特性,并基于渗流场计算结果采用极限平衡法计算了安全系数.根据计算结果,从降雨过程中和降雨后两个角度分析了堆积体内部渗流场与稳定性对不同降雨条件的响应规律.结果表明,暴雨较久雨对堆积体渗流场的影响更大,并表现出强烈滞后性;而久雨较暴雨对堆积体稳定性影响更大,且表现出较弱滞后性;暴雨易在降雨结束后造成滑坡,而久雨更有可能在降雨过程中造成滑坡.  相似文献   

19.
江基冰 《科技信息》2012,(32):383-383
本文利用PLAXIS有限元程序结合强度折减法对水位下降过程中库岸边坡的稳定性进行了分析。通过计算可以看出,水位下降引起的渗流作用对滑坡稳定性的影响十分明显,水位下降过程中坡体内超孔隙水压力的发展和积累对边坡的稳定性十分不利。同时,在库水位的下降过程中,坡体存在一个最危险的水住,即最不利水位,建议在实际工程中以此作为校核点。在计算过程中PLAXIS程序能较好地模拟水位下降引起的渗流作用对边(滑)坡稳定性的影响。  相似文献   

20.
降雨是堆积型滑坡失稳破坏的主要诱因之一,滑坡的失稳和破坏与雨水渗流紧密相关。选取贵州省岑巩县大榕滑坡为研究对象,大榕滑坡为典型的古滑坡堆积区失稳,通过详细分析该堆积型滑坡形态特征、地层岩性、物质结构及变形特征,根据工程水文地质条件建立数值计算模型,利用饱和-非饱和渗流有限元模拟降雨入渗时滑坡堆积体的瞬态渗流场,将计算得到的瞬态孔隙水压力和基质吸力对非饱和土抗剪强度的影响用于滑坡极限平衡分析,根据渗流场和应力场数值耦合分析不同降雨雨型、强度、历时对滑坡稳定性的影响。研究表明:降雨是滑坡持续变形并失稳的诱发原因,与降雨类型相比降雨强度对滑坡稳定性影响较大;滑坡稳定性在降雨结束后延滞一段时间达到最小,此时对滑坡的稳定性最不利,随后稳定性逐渐上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号