共查询到20条相似文献,搜索用时 15 毫秒
1.
《云南民族大学学报(自然科学版)》2018,(6)
对股票进行投资时,由于股票数据具有较大的不稳定性,往往大多数时候无法对其进行精确的预测,而对其变化趋势和变化空间进行预测尤为重要,当利用支持向量机对股票数据进行回归预测时,只能得到具体点的预测值,不能预测股票数据短期的变化趋势,因此本文将模糊信息粒化和支持向量机相结合,对股票数据未来5天的变化趋势进行了预测研究,实验表明该方法具有理想的效果. 相似文献
2.
随着原油市场环境的日益复杂,模型很难准确预测未来某段时间的原油价格.在保证预测精度的前提下为获得尽可能久的预测时长,采用模糊信息粒化方法简化计算复杂度,通过压缩样本点信息得到Up、Low和R三个模糊参数.针对原油价格时间序列周期性、非线性和长时记忆性的特点,基于支持向量机算法对模糊参数进行回归预测.研究表明,此法能够较... 相似文献
3.
犯罪时间序列一般具有随机性和波动性强的特点。传统的时间序列建模方法利用犯罪时序数据之间的相关性建立预测模型;但对细颗粒度下的信息利用不足。相比之下,基于模糊信息粒化的支持向量机能够在对时间序列的细颗粒度数据进行粒化预处理的基础上建立拟合回归模型,实现粗颗粒度下的时序预测。利用基于模糊信息粒化的支持向量机方法对S市的侵财类案件数据进行分析预测,并与ARIMA模型进行了比较。结果表明该方法在预测精度上要显著优于时间序列预测模型。对公安部门的警务指挥与情报研判具有较高的实用性。 相似文献
4.
《河北大学学报(自然科学版)》2017,(2)
模糊支持向量机是在支持向量机的基础上,通过考虑不同样本对支持向量机的作用而提出的一种分类方法,然而,该方法却忽视了给定样本集的结构信息.为此,将样本集中的结构信息引入到模糊支持向量机中,给出了一种结构型模糊支持向量机模型,利用拉格朗日求解方法,将其转换为一个具有约束条件的优化问题,通过求解该对偶问题,获得了结构型模糊支持向量机分类器.实验中选取标准数据集,验证了提出方法的有效性. 相似文献
5.
基于支持向量机的模糊回归估计 总被引:1,自引:0,他引:1
支持向量机是在统计学习理论上发展起来的新一代学习方法,该方法在模式识别、回归估计、概率密度函数估计等方面都获得了较好的应用.基于含有不确定性信息的问题,引入了模糊支持向量机.针对回归估计问题,利用支持向量机的基本思想提出单参数约束下的支持向量机模糊线性回归模型,并给出模型的解,实验结果表明,与其它的模糊回归估计相比该方法得到了更加满意的最优解并且缩短了运行时间. 相似文献
6.
《延安大学学报(自然科学版)》2016,(4)
搜集、整理2016年3月至4月的上证50ETF高频交易数据,借助Excel工具并以历史波动率模型估计标的资产收益率的波动率,分析模型中的参数。分别用经典B-S模型和扩展B-S模型对上证50ETF期权进行定价实证计算,并通过对模型结果与期权市场价格进行均方误差计算及比较,得出两种计算方法的拟合程度均较好且扩展B-S定价模型更有效,从而为期权市场投资者提供了一个有效的分析工具。 相似文献
7.
8.
基于密度法的模糊支持向量机 总被引:13,自引:0,他引:13
针对支持向量机对训练样本内的噪音和孤立点特别敏感、极大地影响了支持向量机分类性能的弱点,提出了一种基于密度法的模糊支持向量机,在支持向量机中引入样本密度模糊参数,从而减弱了噪音以及孤立点对支持向量机分类的影响.实验结果证明,在抗击孤立点和噪音点的干扰方面,上述方法优于类中心向量方法以及类中心点距离方法,取得了很好的效果.这一方法大大提高了支持向量机分类的泛化能力,从而大大提高了支持向量机的应用范围. 相似文献
9.
针对高维输入小波网络的初始参数和网络结构非常复杂且计算量大的问题,提出用支持向量机(SVM)确定小波网络的初始参数和网络结构的方法。首先,使用有监督模糊聚类算法从聚类中抽取模糊规则,然后对每一个规则的后件使用支持向量机方法确定小波网络的结构和初始参数,最后采用梯度下降方法调节模糊小波网络中的参数,使得模糊小波网络输出与期望输出之间的误差较小。仿真结果表明:该算法与传统的模糊神经网络(FNN)相比显著提高了分类精度。 相似文献
10.
为了有效地利用信息技术发展而产生的海量信息,信息检索与数据挖掘得到了快速的发展,通过对传统支持向量机的特点分析,针对其在文本分类中的局限性,采用了一种基于二叉树的模糊支持向量机的多分类算法,通过实验证明该算法有更好的抗干扰能力和更好的分类效果。 相似文献
11.
针对支持向量机对训练样本内的噪声和孤立点比较敏感,影响了支持向量机分类性能的弱点,利用模糊支持向量机的学习方法,构建了变压器故障诊断模型.采取一种基于二叉树的多分类方法,使用模糊C均值聚类算法求取模糊支持向量机的模糊隶属度,采用径向基核函数,并利用遗传算法对模糊支持向量机的参数进行寻优.实验结果表明,基于二叉数的模糊支持向量机模型相比BP神经网络、支持向量机有更高的诊断准确率,基于二叉树模糊支持向量机的变压器故障诊断方法是可行的. 相似文献
12.
13.
支持向量机作为1种机器学习方法已广泛应用于模式识别及函数拟合,但在支持向量机中,训练数据均为精确数据.针对训练数据的输入是模糊数的情况,研究基于模糊训练数据的分类型支持向量机,并给出其解法.然后应用基于模糊训练数据的支持向量机研究模糊线性回归问题. 相似文献
14.
针对传统的支持向量机(SVM)对训练样本中的噪声和野值特别敏感而导致的过学习问题,文中提出了一种新的基于动态核函数的模糊支持向量机(FSVM).该方法不仅考虑了样本点到类中心的距离,而且还考虑了样本间的密切度,结合这两种思想在特征空间中构造了一种新的基于动态核函数的模糊隶属度.仿真实验表明,该方法有较好的分类精度和推广能力并且在理论上具有一般性和能够有效地减弱野值的影响. 相似文献
15.
模糊孪生支持向量机通过为每个训练样本赋予不同的模糊隶属度来构建2个最优非平行分类面,以便减少噪声或孤立点对非平行分类面的影响,进一步提高了支持向量机的性能.本文结合超松弛迭代法对模糊孪生支持向量机进行了研究,通过迭代技术求解凸二次规划问题中的拉格朗日乘子,减少了支持向量机的训练时间,在UCI标准数据集上分别对C-FTSVM和v-FTSVM进行了实验研究,并对使用传统求拉格朗日乘子的方法与超松弛迭代(SOR)的方法进行了对比,表明了使用超松弛迭代法不仅在时间性能上得到了提高,而且其分类正确率也优于传统的方法. 相似文献
16.
提出一种基于模糊支持向量机(FSVM)的切削过程中刀具磨损检测方法,对切削加工过程中的刀具磨损状态进行诊断与预测。提取切削加工过程中刀杆的振动信号和切削刀具的切削力信号,对其进行分帧处理,提取FFT特征量,对该特征向量进行模糊支持向量机的学习和训练。实验结果表明,该方法能够充分发挥模糊支持向量机的权系数作用,有效检测切削过程刀具的磨损程度,与同类识别方法的识别结果相比较,具有一定的优越性。 相似文献
17.
提出一种基于模糊支持向量机(FSVM)的切削过程中刀具磨损检测方法,对切削加工过程中的刀具磨损状态进行诊断与预测。提取切削加工过程中刀杆的振动信号和切削刀具的切削力信号,对其进行分帧处理,提取FFT特征量,对该特征向量进行模糊支持向量机的学习和训练。实验结果表明,该方法能够充分发挥模糊支持向量机的权系数作用,有效检测切削过程刀具的磨损程度,与同类识别方法的识别结果相比较,具有一定的优越性。 相似文献
18.
《辽宁师范大学学报(自然科学版)》2016,(1)
图像去噪是图像处理领域的研究热点,数字图像去噪方法研究仍然是一项富有挑战性的工作.本文以性能卓越的曲波(Curvelet)变换理论为基础,提出了一种基于模糊支持向量机(FSVM)的曲波域图像去噪算法.该算法的基本工作原理为:首先,对原始噪声图像做曲波分解以获得变换系数;然后,结合噪声分布特点确定系数空间性,并构造出FSVM的训练特征;最后,对高频曲波系数进行模糊分类与自适应阈值去噪,并进一步对去噪后系数进行曲波重构以得到去噪图像.通过仿真实验结果,证明了本文算法在消除伪吉布斯(Gibbs)现象的同时,具有较强的抑制噪声能力和边缘保护能力. 相似文献
19.
基于模糊遗传优化支持向量机的系统辨识研究 总被引:2,自引:0,他引:2
在实际应用中支持向量机的参数选取问题一直没有得到很好地解决,限制了其应用。为了能够自动获取最优的支持向量机参数,提出了基于模糊遗传算法的SVM参数选择方法,用模糊逻辑在线调整遗传算法的交叉概率pc和变异概率pm,并采用基于模糊遗传优化的支持向量机回归和BP神经网络对非线性系统辨识问题进行了研究。仿真结果表明,在小样本情况下,支持向量机比神经网络具有更高的系统辨识精度和更好的泛化能力。 相似文献
20.
随着互联网信息的迅速增长,信息过滤技术得到越来越广泛的应用.笔者将支持向量机引入到信息过滤中,利用它来训练样本进而构建用户模板.同时,考虑到用户信息需求的动态性及构建完备训练集的困难性,在系统中引入反馈技术来进一步调整优化用户模板,提高过滤的自适应能力及准确性. 相似文献