首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
聚苯乙烯微球(PST)作模板成功地制备出了三维(3D)多孔LiFePO4锂电池正极材料,并与传统固相法制备的LiFePO4比较,分析形貌、性能差异.结果显示,固相法合成的LiFePO4近似呈球形,颗粒大小不均,平均粒径约80~220nm.而模板法合成产物具有3D多孔结构,孔径较为均匀.BET测试显示,3D多孔LiFePO4比表面积较大,为11.239 8m2/g,单孔体积为0.034cm3/g,而固相法合成产物比表面积为2.003 2m2/g,单孔体积为0.006cm3/g.因此,3D多孔LiFePO4为锂电池中锂离子嵌入和脱出提供便利通道.电化学性能显示,两种方法在3.3~3.5V电压区间有一个较好充电和放电平台,固相法最大充放电比容量为60~70mAh·g-1,而模板法合成的多孔材料其稳定性较好,充放电比容量基本稳定在170mAh·g-1左右.电化学阻抗谱(EIS)分析,多孔的LiFePO4材料其欧姆接触电阻(R1)、电化学反应的电荷转移电阻(R2)和半无限边界条件下的扩散阻抗(W1)较之固相法合成LiFePO4材料均小,3D多孔结构有利于减少因阻抗引起的电池容量的损耗,增强电池的稳定性,提高可逆比容量.  相似文献   

2.
采用化学还原法得到纳米级Sn-Co粉末,再经过与硬碳粉混合球磨得到Sn-Co-C复合粉体. 复合粉体与锂片组成模拟电池,首次放电比容量为558.4 mAh/g,首次充电比容量为338.5 mAh/g;循环30次后,放电比容量保持在348.2 mAh/g,保持率为62.4%;充电比容量保持在335.4 mAh/g,保持率为99.1%. 充放电比容量较硬碳提高3倍左右.  相似文献   

3.
采用化学还原共沉积法制备了Sn-Sb-Co复合材料,用SEM对其形貌进行表征.根据充放电曲线、循环伏安曲线和交流阻抗谱,探讨了材料的嵌/脱锂行为.热处理后的Sn-Sb-Co复合材料呈不均匀粒状的无定形态结构;Sn-Sb-Co复合电极首次充、放电比容量分别为618,1 325 mAh/g,第20循环的可逆比容量为390 mAh/g,库仑效率为92%.  相似文献   

4.
研究分别以Mg-Al-LDH,Zn-Cr-LDH和Mg-Cr-LDH为模板,海藻酸钠为前驱体在600℃下炭化制备的多孔炭发现,多孔炭的BET比表面积从173m2/g增加到497m2/g,而海藻酸钠自身炭化所得多孔炭的比表面积仅为95m2/g。电化学研究表明,以Mg-Cr-LDH为模板制备的多孔炭(PC—4)电极的循环伏安曲线图形更接近矩形,阴极和阳极过程基本对称;在恒电流充放电实验中,50mA/g的电流密度下PC—4电极的电容为92F/g且电流密度为500mA/g时充放电循环1000次后电容损失小于1%。比表面积、孔结构和电化学研究表明,海藻酸钠修饰LDH制备的多孔炭具有作为超级电容器电极材料的潜在价值。  相似文献   

5.
以碳布为基底,通过浸渍法成功制备了柔性硫/碳纤维布电极.制备的柔性硫/碳纤维布电极无需添加导电剂和粘接剂,可直接用作硫正极极片组装电池,大大简化了电池制备工艺.电化学测试结果表明,硫含量为56.77%(质量分数)的硫/碳纤维布电极展现出了最好的电化学性能,即在0.1A/g电流密度下的可逆放电比容量达1 394mAh/g;充放电循环测试100次后,可逆放电容量仍然维持在733mAh/g.电化学性能的提高主要归因于碳纤维本身的导电性、柔韧性以及大量碳纤维相互交错互联的导电网络.  相似文献   

6.
以棉籽为原料、KOH为活化剂,利用微波辐射脱氢、炭化、活化制得类石墨烯结构炭材料.采用X射线衍射(XRD)、拉曼光谱(Raman)和透射电镜(TEM)对材料的晶体结构和形貌进行了表征.通过恒流充放电和循环伏安(CV)对材料的电化学性能进行了测试.结果表明:以棉籽为原料可制备出具有高比表面积的类石墨烯结构炭材料,该材料用于锂离子电池负极,电化学性能优良,并且库仑效率高.材料在充放电倍率为0.5C时,第1周放电比容量达1 817.4mAh/g,第2周放电比容量达到726.5 mAh/g,经过0.5C,1C,2C和5C循环回到0.5C的时,充放电比容量仍保留在648.1mAh/g.  相似文献   

7.
为增加电极的活性面积,采用两步电沉积制备具有高活性面积的铅电极.先以铜棒为基质恒电位氢气泡模板法沉积多孔铜层,再以多孔铜层为基质电沉积铅.X射线衍射(XRD)结果表明铅为立方结构,扫描电镜(SEM)显示四方柱状铅粒均匀沉积在多孔铜层的孔壁上,呈现三维多孔形貌.电沉积铅电极用于CO2电还原反应,循环伏安(CV)测试结果表明,其比普通铅片电极具有更正的起峰电位和更高的电流密度.在施加电位为-1.7,V(相对饱和甘汞电极)、KHCO3电解液浓度为0.3,mol/L时,生成甲酸的最高电流效率达到92%.对CO2电还原过程影响因素的研究表明:在低电流密度区,随电流密度的增加,生成甲酸的电流效率和速率都增加;在高电流密度区,随电流密度增加,生成甲酸的速率增加,而生成甲酸电流效率逐渐降低.时长为1 h的CO2电还原反应中,产物甲酸的电流效率逐渐降低,对比反应前后电沉积铅电极的XRD谱图和SEM图发现,铅仍为立方结构,而形貌发生显著变化,铅由四方柱状变为层状覆盖在多孔铜层颗粒的表面.电极的活性面积减小是甲酸电流效率降低的主要原因.  相似文献   

8.
以氧化铁为铁源,通过简单的固相碳热法制备LiFePO4-MWCNTs复合正极粉体材料.利用XRD和SEM表征LiFePO4-MWCNTs复合材料的结构和表面形貌.利用EIS、CV和充放电测试实验测量LiFePO4-MWCNTs复合材料的电化学性能.XRD结果显示复合材料为橄榄石型的磷酸铁锂纯相,多壁碳管在正极材料中将颗粒相连,增加导电面积,形成三维网络结构,为颗粒之间提供附加的导电通道.通过添加质量分数为5%的多壁碳管的方法对LiFePO4正极材料导电通道进行改善.在0.5C充放电速率下首次放电比容量可以达到151.6mAh/g,充放电50次后,放电比容量还能保持在145.5mAh/g,在1C充放电速率下比容量保持在140mAh/g,2C时比容量保持在130mAh/g.随着充放电速率的增加,锂离子电池的性能也更加优越.  相似文献   

9.
多孔硅具有大量孔洞,能有效缓解体积膨胀带来的压力,有望成为锂离子硅基负极材料的一个研究方向.采用光助电化学腐蚀、二次化学腐蚀制备高孔隙率n型多孔硅材料,通过优化后的光助电化学腐蚀,样品的孔径约为800~1 000nm,多孔层厚度(平均孔深)约为155μm,孔隙率约74%.二次腐蚀后,样品孔径增加到1.1μm,多孔层厚度减小到110μm,孔隙率增加到84%,表明二次腐蚀增加了样品的孔径和孔隙率.以二次腐蚀的多孔硅材料为负极的锂离子半电池在0.05C的恒流充放电循环测试下,循环20次后充放电比容量保持在188和198mAh/g,效率保持90%以上.实验结果表明,多孔硅锂电极比单晶硅锂电极具有更长的循环寿命,可有效提高锂电池的性能.  相似文献   

10.
采用草酸盐沉淀及高温固相反应相结合的方法合成了锂离子电池的活性正极材料Li_aNi_(0.7)Co_(0.3)O_2.XRD、SEM及电化学测试数据表明:该材料结晶及层状结构良好,首次充放电比容量为175.4mAh/g和142.9mAh/g,循环30次后放电比容量仍为136.0mAh/g,比容量损失只有4.8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号