共查询到18条相似文献,搜索用时 71 毫秒
1.
相似度计算模型是协同过滤技术的核心,相似度模型的好坏直接关系到近邻用户推荐的准确性。通过用户项目评分数据集局部相似性与全局相关性分析,提出相似性度量改进模型,而改进后模型用MovieLens100K数据集实验验证,通过均方根误差、平均绝对误差和召回率三个实验结果分析。该算法可有效地提高推荐预测评分和推荐项目的准确率。 相似文献
2.
分析了传统CF算法和基于项目评分的CF算法中存在的问题,对其相似性计算和推荐集选取方法进行了改进,并提出了一种优化的CF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度,同基于项目评分的CF算法相比能够有效减少计算复杂度。 相似文献
3.
4.
吴杉 《焦作师范高等专科学校学报》2008,24(1):78-79
最近近邻算法在挑选目标用户的“邻居”存在高稀疏性,在算法中引入用户的权威性,可以通过“用户评价过的资源数量”、“用户身份背景”和“资源的角度”三个方面计算用户的权威值和相似性,使数据稀疏具有最小的平均绝对偏差。 相似文献
5.
考虑用户的二阶相似性信息,提出了一种改进的协同过滤个性化推荐算法.实证统计发现,经典的基于产品映射的用户相似性定义中包含很多流行产品的信息,因此,无法准确度量用户的兴趣关联,通过引入有向的二阶相似性,算法可以有效降低大众主流喜好对目标用户相似性定义的影响.Movielens数据集上的实验结果显示,算法的准确度可以达到0.080 8,相对于经典的协同过滤算法,其准确性提高了22.08%,且当推荐列表长度L=50时,推荐列表的多样性可以达到0.775,较经典的协同过滤算法提高了10.87%.研究表明,二阶有向相似性信息对个性化推荐算法有很大影响. 相似文献
6.
基于语义相似性的资源协同过滤技术研究 总被引:6,自引:0,他引:6
为解决协同过滤推荐系统中所存在的可扩展性、稀疏性等问题带来的推荐性能下降,提出新的基于资源语义知识协同过滤算法,算法综合考虑了资源语义和用户评价的影响,改善基于资源协同过滤算法性能.实验表明,基于资源语义的协同过滤算法相对于传统协同过滤算法可提高推荐性能. 相似文献
7.
个性化推荐系统是解决互联网信息超栽的主要途径之一,协同过滤推荐是目前应用最广泛和最成功的个性化推荐系统。本文介绍了协同过滤推荐算法的基本思想、技术分类和最新研究进展,分析目前出现的代表性算法,总结协同过滤推荐算法中的关键问题和相关解决方案,最后总结了推荐系统的性能评测方法和未来的研究热点。 相似文献
8.
结合项目类别信息的协同过滤推荐算法 总被引:1,自引:0,他引:1
针对个性化推荐系统中协同过滤算法面临的数据稀疏问题以及用户相似性度量的不准确,提出了一种结合类别信息的协同过滤推荐算法。该算法利用用户评分数据计算用户之间对类别关注的相似性,并将用户对类别关注的相似性和用户评分相似性进行组合,得到用户综合相似性,从而提高了最近邻居搜索的准确度,缓解了数据稀疏性问题。实验结果表明,该方法能够有效地避免传统相似性度量方法存在的问题,使得数据稀疏性对最终推荐结果的负面影响变小,在一定程度上提高系统的推荐精度。 相似文献
9.
针对用户情境信息,提出一种融合分类与协同过滤的情境感知音乐推荐算法. 首先,通过计算用户情境信息的相似度,由协同过滤算法得到初始音乐推荐列表;然后通过机器学习算法训练分类模型,得出用户在特定情境下的音乐类型偏好;最后将协同过滤得到的推荐列表与分类模型得到的音乐类型偏好进行融合,为特定情境的用户提供个性化音乐推荐. 该算法不仅有效地降低了推荐过程的复杂度,还使传统的协同过滤推荐算法具备了情境感知的能力. 实验结果表明,该方法可以有效地提高个性化音乐推荐系统的性能. 相似文献
10.
针对个性化推荐系统中协同过滤算法面临的数据稀疏问题以及用户相似性度量的不准确,提出了一种结合类别信息的协同过滤推荐算法。该算法利用用户评分数据计算用户之间对类别关注的相似性,并将用户对类别关注的相似性和用户评分相似性进行组合,得到用户综合相似性,从而提高了最近邻居搜索的准确度,缓解了数据稀疏性问题。实验结果表明,该方法能够有效地避免传统相似性度量方法存在的问题,使得数据稀疏性对最终推荐结果的负面影响变小,在一定程度上提高系统的推荐精度。 相似文献
11.
针对传统协同过滤算法存在的数据稀疏性和推荐范围问题,提出一种混合协同过滤推荐方法.该方法将两种传统算法结合,并综合考虑了项目标签属性等信息.首先利用基于项目的协同过滤算法生成预测评分,并替换原始用户-项目评分矩阵中的零值.其次利用基于用户的协同过滤算法计算填充后矩阵的用户相似度,以及预测评分并产生最终推荐.最后基于MovieLens数据集实验证明,该方法能够有效提高推荐精度,扩大推荐范围. 相似文献
12.
针对海量新闻的个性化推荐算法进行研究,提出一种改进的推基于K-means聚类的协同过滤用户推荐算法.该算法首先随机初始化了K个质心,按照重新定义过的新的用户相似度公式将用户进行K-means聚类,并选取相似度最大的作为当前用户所属类别;然后再重新定义了质心并进行迭代聚类;最后在每一个用户类里应用基于用户的协同过滤推荐算法,并给用户合理的个性化推荐.仿真实验测试表明,新算法能够提高推荐的准确率,并且有效提高了扩展性. 相似文献
13.
针对推荐系统协同过滤方法中存在的数据稀疏和冷启动等问题,提出一种基于协同过滤和混合相似性模型的推荐算法。该算法首先计算用户在不同项目间的相似性,然后结合项目特性和标签信息权重来描述用户、项目、特性和标签之间的关系;其次,设定用户偏好因子和不对称因子调整不同用户间的评分偏好;最后,结合用户间相似性、项目综合权重,以及评分偏好构建混合相似性模型,并加入用户时间权重信息解决项目冷启动问题。在公开的MovieLens数据集上的实验表明,该算法在各种评估指标上比其他相关方法获得更显著的结果。 相似文献
14.
Recommender system is an important content in the research of E-commerce technology. Collaborative filtering recom-mendation algorithm has already been used successfully at recom-mender system. However,with the development of E-commerce,the difficulties of the extreme sparsity of user rating data have become more and more severe. Based on the traditional similarity measuring methods,we introduce the cloud model and combine it with the item-based collaborative filtering recommendation algorithms. The new collaborative filtering recommendation algorithm based on item and cloud model (IC-Based CF) computes the similarity de-gree between items by comparing the statistical characteristic of items. The experimental results show that this method can improve the performance of the present item-based collaborative filtering algorithm with extreme sparsity of data. 相似文献
15.
通过分析现有的协作过滤技术,提出了基于矩阵聚类的协作过滤算法,把矩阵聚类算法和协作过滤相结合,自动划分原始用户———资源评分矩阵,依据划分后的子数据矩阵生成推荐结果.实验结果表明,提出的基于矩阵聚类的协作过滤算法优于传统协作过滤算法,减少了近邻搜索范围,提高了算法的推荐精度. 相似文献
16.
基于不同数据集的协作过滤算法评测 总被引:3,自引:0,他引:3
针对协作过滤算法评测中普遍采用单一数据集,该文将传统的User-based(近邻数为20)、Item-based、Itemaverage、Item user average和Slope One 5种算法应用于MovieLens和Book-Crossing两种数据分布特征不同的数据集。结果显示,在Movielens这种评分值相对比较稠密的数据集上,Slope One算法的预测精度最好;而在评分值相对比较稀疏的Book-Crossing数据集上,Item-based算法的预测精度最好,Slope One的预测精度最差。选择算法应根据用户和资源分布具体情况确定。 相似文献
17.
基于案例推理的过滤算法及智能信息推荐系统 总被引:1,自引:0,他引:1
智能信息推荐系统能够通过用户偏好,利用信息过滤算法主动剔除无关信息。该文提出了一个基于案例推理的职能信息推荐系统的架构,主要包含数据层、过滤层和结果展示层3个功能层次。设计了一个基于案例推理的过滤算法,将用户对文本的评价定义为案例;采用归一化的Euclidean距离,计算用户之间的相似度。在一个公共数据集上进行了不同过滤算法的reca ll值对比实验。结果表明,采用案例推理技术,对协同过滤的准确度有一定程度的改善。 相似文献
18.
针对传统协同过滤推荐算法在用户隐式反馈数据挖掘不够充分、用户兴趣偏好模型过于粗糙,提出一种标签重要程度的协同过滤推荐算法。用户使用标签的种类和频率可以反映用户的偏好和偏好程度;在此基础上建立新的用户兴趣偏好模型,将标签对用户的影响程度进行量化,建立新的相似度计算方法。最后获得目标用户的近邻集合和预测评分,为目标用户实施有效推荐。实验结果表明该算法大幅度提高了推荐的精准度、缓解了冷启动问题。 相似文献