首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用可视化实验技术对压力为0.1MPa的条件下、制冷工质R11池沸腾气泡行为进行了深入观察和分析.可视化实验结果表明,气泡底部微液层的蒸发对气泡的生长具有极其重要的作用.在气泡生长过程中,未发现气泡底部的微液层有液体补充.研究结果表明,随着壁面过热度的升高,气泡脱离直径与脱离时间减小,而气泡脱离频率升高.此外,通过对实验图像资料的分析,得到了气泡直径及气泡底部干斑直径随时间的变化曲线以及沸腾表面汽化核心密度随热流变化的关联式.基于实验结果,利用动态微液层模型对制冷工质R11的池沸腾曲线进行了预测,结果显示,预测值与实验值在高热流密度条件下符合较好.  相似文献   

2.
为加深对狭缝通道内水沸腾换热机理的探索,对宽度为2 mm、长度为300 mm的竖直狭缝通道内水沸腾气泡动力学展开研究,通过数值模拟的方法探索气泡生成、长大和脱离的过程,分析了壁面过热度、泡底微层的运动对沸腾换热的影响,并与实验数据进行了对比.数值计算中考虑了重力、表面张力和壁面黏附作用.研究结果表明:表面张力在细通道沸腾换热过程中所起的作用要远远大于重力;壁面过热度越高,气泡脱离直径越大;随着加热时间的增加,气泡直径d不断增大,当d≥1.5mm时,就会受到来流的影响而发生形变;泡底微层的存在加速了壁面对流,对换热系数的提高有一定作用;数值模拟结果与实验数据吻合良好.  相似文献   

3.
为提高极端润湿性表面的功能性,制备了超亲水、超疏水高粘附、超疏水低粘附3类极端湿润性表面,利用高速摄像机对不同上升高度下的气泡碰撞极端湿润性表面进行了行为特性研究,所用气泡当量直径分别为2.16、2.59、3.32 mm.研究发现,表面湿润性、气泡上升高度(L)和气泡当量直径(D)对气泡行为特性有着重要影响,表面微观结构和表面张力是影响气泡在表面稳定状态的最为关键的因素.当气泡碰撞超疏水低粘附表面时,先振荡或弹跳,最后在表面铺展成一层气膜;碰撞超亲水、超疏水高粘附表面时,气泡先振荡或弹跳,最后以球缺状的形式静止在表面上.气泡碰撞表面速度较大时,气泡在3类表面上都会发生弹跳行为,其初次弹跳高度(h_1)随着L增大先增大后减小,在L为13.6 mm时均达到极值,分别为6.05、5.53、4.37 mm.对超疏水低粘附表面而言,随着气泡直径的增大,气泡在碰撞过程中的能量耗散增加,因此h_1逐渐下降,气泡发生铺展的时间逐渐缩短.  相似文献   

4.
研究微重力下的气泡动力学行为及其脱落特性是揭示微重力下流体沸腾换热机理的基础,而气泡处于空间复合弱力环境下,表现出不同于常规的特殊现象。以微重力下平板加热面上氢沸腾气泡为对象,展开了受力分析,考虑到Marangoni效应的影响,构建了受力平衡模型,进一步计算并分析了不同重力、压力、流体过冷度、壁面过热度下的气泡脱落直径。研究结果表明,当重力降低至某一临界值后,沸腾气泡存在3个不同尺度的脱落直径,且重力水平越低,气泡最大脱落尺寸越大,直径最大可达几十厘米。在常重力下,沸腾气泡仅存在0.01~0.1mm量级的脱落直径,压力对常重力与微重力下气泡脱落直径的影响差异显著,随着压力的升高,常重力气泡脱落直径不断减小,而微重力下最大气泡脱落直径有所增大;在微重力下,流体温度越低则过冷度越大,因此气泡最大脱落直径也越大,液氢过冷度每提高1K,最大气泡脱落直径增大约10%。当重力一定时,存在临界壁面过热度,且只有当壁面过热度超过该临界值时,沸腾气泡才会存在3个脱落直径。当压力越高、流体温度越低时,该临界过热度越小。  相似文献   

5.
特殊润湿性表面的水下气泡操控因在工业生产中具有潜在的应用而受到极大关注.通过激光烧蚀、表面化学修饰、修饰剂去除、热板退火调控润湿性等工艺制备了润湿性梯度可控的Janus网,并通过监测水下气泡单向自发运输的动态过程,研究了该Janus网表面润湿性及微孔尺寸对水下气泡单向自发运输的影响.结果表明:Janus网上下表面为超疏水/亲水、疏水/亲水或超疏水/疏水时,均具有气泡单向自发输送能力;微孔尺寸越小、上下表面间润湿性梯度越大越有利于气泡单向自发运输.此外,对气泡单向自发运输的物理机制和影响因素进行分析,为梯度润湿性金属网的制备提供了理论依据.  相似文献   

6.
微细气泡的生成时间和大小对污水处理的效率具有重要影响。为探究微通道壁面润湿性对微细气泡生成特性的影响,采用两相流水平集的方法模拟研究不同接触角下微细气泡的生成过程。以接触角为主变量,液体流量、气体压强和气体类型为次变量,探究次变量对微细气泡生成时间和脱离体积的影响。设计并制造了同轴式微流控芯片,开展微细气泡生成特性的试验。结果表明接触角在0-180°递增时,微细气泡的生成时间总体呈下降趋势,脱离体积先增加后减小,其中90°接触角为生成时间的分界点和脱离体积的峰值点。此外,三个次变量中液体流量的变化对微细气泡生成特性的影响尤为显著,液体流量越大,其生成时间和脱离体积越小。实测值与仿真值的偏差在正负百分之十以内,验证了微通道壁面润湿性对微细气泡生成特性的影响规律。  相似文献   

7.
以制冷剂R141b为实验工质,在截面尺寸为1 mm×2 mm,壁面接触角分别为67°、0°和156°的普通亲水、超亲水及超疏水矩形微细通道进行流动沸腾实验,并对3种表面微细通道沿程测点压力进行对比,分析极端润湿性(超亲水和超疏水)微细通道内R141b的流动沸腾压降特性.研究结果表明:极端润湿性微细通道内各压降分量比例和普通亲水微细通道大致相同,单位长度两相摩擦压降均随着质量通量、入口温度和热流密度的增大而增大;超疏水表面微细通道进出口总压降最大,是超亲水表面的1.08~1.17倍,且在单相流动区域内的沿程测点压力曲线斜率最小,两相流动区域内的沿程测点压力曲线斜率最大;引入壁面表面能参数λ_s对Qu-Mudawar模型进行修正,能更好地预测实验值,平均绝对误差为10.7%.  相似文献   

8.
通过分子模拟方法,研究稠密CO2溶剂中,全氟聚醚表面活性剂对水在3种不同亲水表面的润湿性的影响。结果表明:对于疏水性表面,表面活性剂部分取代存在于水滴和表面之间的CO2分子;对于弱亲水性表面,表面活性剂的加入使得水滴基本脱离表面;而在强亲水表面上,表面活性剂的加入增大水滴的接触角,减弱表面润湿性。同时进一步分析表面活性剂在水/CO2界面处的密度分布。总之,在稠密CO2溶剂中,表面活性剂能够改善表面的润湿性,这将有利于表面上亲水物质的脱除。  相似文献   

9.
运用气泡形成的两阶段模型,分析在一定气体流量下,静止钢液中通过钢包孔口连续溢出气泡的形成过程。通过MATLAB编程计算得到气泡的脱离直径。对影响气泡脱离尺寸的气体流量、孔口直径和表面张力因素进行分析,并将气泡直径的理论计算值与数值模拟结果进行比较。从理论计算结果以及与数值模拟对比得出:随着气体流量的逐渐增大,气泡的脱离直径总体变化趋势为由缓慢增大到迅速增大;在较小的气体流量下,气泡脱离直径受孔口直径和表面张力影响显著,随着流量的增加其影响越来越小;孔口边缘的润湿性对气泡脱离尺寸的大小起决定性作用。  相似文献   

10.
基于Lagrange思想提出一种界面质点受力法模型用于描述气液界面的动态演化过程,该模型将气液界面离散成一系列的质点,对各质点建立受力模型及其运动方程,通过各质点运动轨迹的求解获得动态演化的气液界面.应用此模型对水下壁面开孔注入不凝性气体气泡的动态生长过程进行了数值模拟研究,预测了气泡的脱离直径和脱离时间.建立可视化实验台,进行了3种不同开孔孔径和10组不同充入流量的气泡生长实验,对模拟结果进行了验证分析.研究结果表明,质点受力法对气泡生长过程形状演化、脱离直径和脱离时间的计算结果均与相同工况实验结果吻合很好,从而验证了该方法的有效性.  相似文献   

11.
为了探讨壁面浸润性与流体初始密度对气泡核化位置以及纳米气泡在凹槽内生长核化影响规律,本文采用分子动力学方法研究纳米结构微通道内液体氩的沸腾核化过程。通过改变固液势能的相互作用参数来调整壁面浸润性。结果表明:纳米凹槽壁面浸润性对气泡核化过程具有重要的影响。一方面,当固体表面的浸润性较弱时,凹槽内流体受排斥力的作用,原子排布比较稀疏,原子碰撞频率增大,局部活化能聚集,从而导致气泡在纳米凹槽内形成。另一方面,当壁面浸润性较强时,气泡会在微通道中央形成。此外,区别于均质浸润性纳米凹槽内气泡曲率半径及接触角保持不变的核化动力学行为,其在异质亲疏水匹配的纳米结构微通道内产生了显著的差异。当壁面浸润性维持不变,核化气泡的曲率半径随着流体初始密度增大而增大,与之相反,稳态接触角却随之减小。  相似文献   

12.
对均匀高压电场作用下平板池沸腾换热的强化效果进行了试验研究,发现在较低过热度的范围内电场对换热有明显的强化效果.场强越高,相同过热度对应的换热系数越高.在相同的场强下,强化系数随着热流密度的增加而减少.结合试验结果对电场强化沸腾换热的机制进行了分析.在热流密度较小的范围内,对流换热占主导地位,电场强化对流换热使壁面过热度大大下降,导致相应过热度下汽泡的平衡半径提高,因此,抑制了核态沸腾.随着热流密度的提高,汽泡的产生和运动成为影响换热的主要因素,此时过热度的变化不是很大,在相同的过热度下,电场可以减小汽泡的临界半径,使汽泡增多.在汽泡准备区,电场会影响汽泡的核化;在汽泡成长区,电场会影响汽泡的长大、变形和脱离;在非沸腾区,电场会影响单相流体的自然对流换热.  相似文献   

13.
分析讨论了加热丝上汽泡生成对加热丝温度的影响。说明一个活化核心的起泡对周围其他活化核心起泡的影响。以及对其自身起泡的影响。同时讨论了两个核心之间起泡的相关性,分析中还发现由于汽泡生长造成的局部温度下降是加热丝表面沸腾需要较高过热度的一个原因,最后进行了数值模拟实验,数值计算和解析分析结果吻合较好。  相似文献   

14.
以宽度为1.0 mm和0.1 mm的竖直矩形细通道内的沸腾换热特性为研究对象,运用数值模拟的方法探索气泡生成、长大和脱离的过程,通过几何重构和界面追踪的方法获取相界面移动和变化对系统内压差以及平均表面换热系数的影响。计算中考虑重力、表面张力和壁面黏性的作用。研究结果表明:通道宽度的不同对气泡生长方式和气泡形态产生很大影响,且核态沸腾换热系数随着细通道宽度的减小而增大;表面张力在细通道沸腾换热过程中所起的作用明显增大,证明细通道有强化换热的作用;由于数值计算中进行了理想化假设,导致数值模拟的沸腾传热系数比现有细通道沸腾传热实验传热系数普遍偏高。  相似文献   

15.
消防水带在火场内长距离供水时,易受到火场高温的影响,在水带壁面形成气泡核化现象,导致水带内气液两相流动现象的发生,造成水带磨损和水枪的难以掌控,影响灭火救援。针对核化特性对基本方程进行了相应描述,着重阐述了均质核化与非均质核化的特点;并对气泡核化所需过热度进行了推导。分析了成核过程中气泡的受力状况,在进行合理化假设的基础上,求得气泡脱离直径;并提出了通过加权的方法。计算对流换热与汽化潜热在气泡核化过程中所占的比重,利用数学分析的方法,推导了总热流密度的计算式;并将数值解与实验数据进行了对比分析,提出了气泡核化特性与气泡脱离直径和气泡成核频率相关的指数有关。  相似文献   

16.
从电场分布的角度,研究了换热表面上气泡在电场力作用下的变形规律和气泡变形影响EHD(electrohydrodynaInics)强化沸腾换热的机理.电场分布决定了气泡在电场力作用下的变形方式,如果换热表面的电场强度高于周围液体或电极的电场强度,则气泡受拉伸作用:反之,气泡受压制作用.热边界层的存在会减小电场力对气泡的拉伸作用,增强电场力对气泡的压制作用,但不会改变气泡的变形方式,气泡在换热表面上无论是被拉伸还是被压制,都能使沸腾换热得到强化,但两者的强化换热机理不同。  相似文献   

17.
Many studies have shown that a very thin liquid microlayer forms under vapor bubbles during nucleate boiling. The heat transfer from the surface to the bubble is then significantly affected by this microlayer and the curved region leading into the microlayer. Various models have been developed to predict the microlayer shape and the heat transfer along the curved interfacial region, but they tend to have inconsistent boundary conditions or unrealistic results. This paper presents a theoretical model to predict the microlayer thickness and the heat transfer rates for a variety of conditions. The results show how the wall superheat, the Hamaker constant, the bubble radius, and the accommodation coefficient at the interface affect the evaporation heat transfer rates and the microlayer shape for a large range of conditions for water and FC 72. The microlayer results are then shown to compare well with predictions made by solving the Navier-Stokes equations in the microlayer.  相似文献   

18.
针对开式系统中水膜闪蒸的换热特性进行了实验研究.实验参数选择如下:循环水过热度为1~15 K;闪蒸室压力分别为20.4、30.2、47.4 kPa;水膜厚度分别为100和300 mm;循环水流量分别为0.028、0.056、0.083 kg/s.实验结果表明:闪蒸换热系数的变化范围为60~140 kW/(m2.K),并随过热度的增大而减小,随闪蒸室内饱和压力的升高而增大,随水膜厚度的增大而减小.根据实验结果,基于闪蒸过程类似核态沸腾,给出了换热系数与各影响参数之间关系的实验关联式,与实验结果的误差小于27%.  相似文献   

19.
采用流体体积函数(VOF)方法,对T型微通道中气泡形成过程进行数值模拟研究,根据气泡形成机理,分析了气液流速、流体性质和微通道尺寸等因素对生成气泡大小的影响。研究结果表明,T型微通道内生成气泡长度随气体份额的增加呈指数增加趋势,而在相同气体份额下气液流速对气泡长度影响不大;比较而言,液体粘度和表面张力对生成气泡大小的影响较小,当液相表面张力从0.072 N·m-1降低到0.01 N·m-1时,T型微通道内生成气泡的长度减小了18%,主要是因为在阻塞阶段,最大颈部宽度和塌陷时间减小了;气泡长度随微通道直径的增加而增大,而气泡的无量纲长度基本不受微通道直径的影响。  相似文献   

20.
摘要: 在考虑固-液接触角影响的半理论沸腾换热模型的基础上,将沸腾换热特性表达为过热度、固-液接触角和物性参数的函数;通过图解法推导出考虑固-液接触角影响的沸腾换热特性的预测关系式;利用无壁面毛细力影响的平坦金属表面或金属表面镀膜加热面在不同饱和压力条件下的饱和水实验数据,获得了适用于不同饱和压力和  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号