首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在实测的基础上得到了适于窄带热轧生产线的辊缝预报模型.经生产性试验表明,本研究给出的辊缝预设值与现场实测非常接近,将其作为控制窄带精度的手段,可取代目前对人工经验"试调"的依赖,具有重要的实际应用价值;对轧件头尾厚度差的计算不但考虑了奥氏体再结晶软化程度对轧机负荷的影响,还考虑了轧辊弹性压扁与轧制压力的耦合对压力及辊缝的综合影响,从而显著提高了带钢头尾厚差的预报效果.这对控制带钢的通条尺寸、提高产品精度具有重要意义.  相似文献   

2.
针对宽带钢多辊冷连轧机组特点,为提高轧制力的预报精度,在结合传统轧制压力模型的基础上把模糊算法和神经网络有机结合,设计出基于模糊小脑模型神经网络的多辊冷连轧机轧制力预报模型.通过对传统轧制力模型计算值、小脑模型预报计算值与实测值进行对比分析可知,基于模糊小脑模型神经网络的多辊冷连轧机轧制力预报模型具有较高的计算精度,更适合于多辊轧机在线计算机过程控制的应用,满足现场在线生产的要求,取得良好的板形板厚控制效果.  相似文献   

3.
采用分段离散的方法,对宽带钢热连轧过程进行了模拟仿真,分析了PC轧机精轧轧制过程中交叉角、弯辊力对辊间压力和轧制压力分布以及轧辊磨损的影响,并结合轧辊磨损实测数据,对轧辊磨损进行了预报研究,研究结果对于板形控制有一定的借鉴作用.  相似文献   

4.
为减少冷轧带钢的非对称板形缺陷的产生,设计了工作辊非对称弯辊控制系统.应用影响函数法计算辊系变形,同时考虑辊缝中金属横向流动对带钢出口横向张力分布的影响,通过迭代法计算出工作辊两端施加不同弯辊力后的辊间压力分布、出口厚度横向分布以及出口横向张应力分布.理论分析结果表明,工作辊非对称弯辊可以在一定程度上改善辊间压力分布不均,减轻轧辊磨损和减少轧辊掉皮事故的发生,降低带钢边部的非对称板形缺陷.实际应用结果证明,当倾斜调整量小于10%时,应用工作辊非对称弯辊替代倾斜调整,可以获得更好的板形精度.  相似文献   

5.
应用ABAQUS有限元软件对平整轧制过程进行三维弹塑性建模及仿真研究,通过温度场模拟入口带钢的初始板形缺陷,利用刚性工作辊的辊形变化综合表达各板形控制手段对承载辊缝形状的调控功效。基于以上力学模型,针对具有初始板形缺陷的带钢,仿真研究平整轧制后带钢的板形缺陷及其与初始板形缺陷及平整工艺条件的关系,揭示带钢平整轧制过程中板形缺陷的遗传与演变的规律。仿真计算结果表明,承载辊缝形状是决定带钢板形缺陷遗传和演变的最主要因素,轧前带钢的初始板形缺陷的程度,即最大纵向延伸差的大小,对平整后带钢的板形缺陷仅有一定程度的遗传性影响。  相似文献   

6.
针对干平整轧制过程中工作辊与带钢表面粗糙度对摩擦系数的影响仅能定性分析、不能满足生产需要的问题,经过大量的现场试验与理论研究,充分结合平整机组的设备与工艺特点,基于粗糙度的基本理论,根据干平整轧制过程中摩擦特点构造了反映工作辊及带钢表面粗糙度与摩擦系数之间一一对应关系的数学模型,提出了相应的模型计算策略,并将其应用到宝钢冷轧薄板厂1 220平整机组的生产实践,定量分析了工作辊及带钢表面粗糙度对摩擦系数的影响,有效地提高了轧制压力的预报精度与产品质量,取得了良好的使用效果,具有进一步推广应用价值。  相似文献   

7.
热带钢连轧机精轧轧辊磨损计算理论   总被引:5,自引:1,他引:4  
对四辊热连轧机精轧轧辊磨损进行了研究 ,除考虑了轧件的轧制长度外 ,还考虑了轧制压力和辊间压力的横向不均匀分布 ,轧件在辊缝中的纵向和横向滑动 ,轧件偏离轧制中心线的影响以及 CVC辊型对磨损的影响 ,以实测数据为基础 ,建立了支承辊和工作辊磨损分布的理论计算模型 ,计算结果与实测结果吻合很好 ,对各种轧机轧辊磨损的研究有一定的参考价值。  相似文献   

8.
针对传统弯辊力预设定模型的缺陷和带钢热连轧轧制特点,利用某钢铁公司1580mm热轧线生产数据,对精轧机组末机架进行了基于遗传算法优化神经网络的弯辊力预报模型研究.以大量实际数据作为神经网络训练输入,充分考虑了输入参数之间的影响作用,模型结构简单、容易实现,其整体性能用平均绝对百分误差、均方根误差和相关系数R评价.通过将预测结果与实测结果比较,验证了模型的精度.研究发现,提出的弯辊力预测模型相比于传统模型可实现高度非线性拟合,适用于提高热轧带钢头部板形控制精度,为实际弯辊力设定提供指导和试验基础.  相似文献   

9.
冷轧薄带钢工作辊边部接触研究   总被引:2,自引:0,他引:2  
为研究工作辊接触对冷轧带钢生产的影响,用影响函数法建立模型,并用现场生产数据模拟计算了四辊轧机的辊系变形.通过计算得到的接触压力、带钢厚度、张应力等分布数据分析了冷轧薄带时发生工作辊接触现象对轧制压力、出口厚度、出口张应力以及板形等的影响.结果表明,工作辊接触使带钢边部轧制压力降低,工作辊与支撑辊间接触压力增大.工作辊接触使带钢凸度和横向厚差减小,对降低边部减薄有利;使出口张应力分布更加均匀,减小了边浪,提高了带钢的平直度.  相似文献   

10.
热带钢连轧机工作辊温度场和热凸度计算   总被引:4,自引:0,他引:4  
工作辊热凸度是影响热带钢连轧机负载辊缝的一个重要因素。其计算精度直接影响到成品的板凸度和板形精度分。作者采用轴对称隐式差分法。  相似文献   

11.
为研究冷轧机在轧制薄铝带时工作辊边部接触对辊系受力和铝带断面形状的影响,借鉴弹性悬臂梁法和影响函数法的处理思想,建立了适用于实际生产在线控制的铝冷轧机辊系变形模型,并对不同入口铝带厚度、弯辊力、工作辊的接触状态进行仿真研究.仿真结果表明:工作辊边部接触力随入口厚度增加而增加、随弯辊力增加而减小;工作辊边部接触轧制时,轧机出口铝带凸度和横向厚差小于非边部接触轧制,有利于铝带边部减薄控制,但降低了铝轧机边部板型调控能力,在轧制中应尽量避免.  相似文献   

12.
单位宽度轧制力对热轧带钢凸度的影响规律   总被引:1,自引:1,他引:1  
为了建立高精度的热轧带钢凸度计算数学模型 ,根据带钢凸度计算理论 ,采用影响函数法开发了四辊轧机带钢凸度影响率计算软件 ,系统地分析了单位宽度轧制力、轧辊直径和压下量对单位宽度轧制力影响率的影响规律·结果表明单位宽度轧制力影响率随带钢宽度的增加呈抛物线变化 ;轧辊直径和压下量对单位宽度轧制力影响率有一定的影响 ;建立了高精度单位宽度轧制力影响率的数学模型 ,确定了单位宽度轧制力影响率基本值及工作辊直径、支撑辊直径、压下量对单位宽度轧制力影响率修正系数的 6次拟合系数 ,为板形控制系统模型的建立及参数优化提供了理论依据  相似文献   

13.
六辊轧机辊间压力分布解析   总被引:7,自引:0,他引:7  
用影响函数法计算了六辊轧机的辊系变形和辊间压力分布,研究了单锥度中间辊对辊间压力分布和轧件横向厚度分布的影响·结果表明采用单锥度中间辊可改善辊间压力分布状态,明显降低辊间压力峰值,但轧件横向厚差稍有增加,最大值出现在轧件边部·计算了不同锥度时的辊间压力分布与轧件横向厚度分布,通过比较辊间压力峰值与轧件边部厚度,确定了最佳锥度范围为1/100~1/150,使HC轧机的辊间单位压力峰值降低15%~20%,轧件横向厚差仅在边部增加几微米,符合板形要求·  相似文献   

14.
介绍了HC—400六辊冷轧机的液压辊缝微调控制系统及为提高板带村出口厚度精度所采取的技术措施.建立了系统的数学模型.并进行了仿真研究.对理论分析和实验结果进行了比较.结果表明:由于采用了自行研制的辊缝仪组成主要的位置闭环直接检测辊缝位置,所以有效地消除了各种因素尤其是支撑辊偏心所带来的对出口厚度精度的影响,经在线轧制生产检验.该系统可满足轧制高精度板带材的需要.  相似文献   

15.
考虑辊系倾角的轴移式轧机辊系弹性变形计算   总被引:1,自引:1,他引:0  
采用分段离散法 ,求解轴移式轧机辊系弹性变形 ,其方法主要特点是计算过程中考虑了轴移式轧机由于工作辊的窜动而引起的辊系倾角对辊系变形挠度的影响 ,为藕合计算板凸度时提供更为合理的辊系弹性变形模型。  相似文献   

16.
热连轧带钢生产过程中,在停轧、换辊后会出现带钢厚度精度低的情况,影响到带材的成材率.为解决此问题,提出了新的轧辊磨损和热膨胀模型,并引入模型稳态误差量的概念,对弹跳方程进行优化改进.现场实际应用效果表明:换辊后首块钢的厚度偏差在40μm范围内达到90%以上,长时间停轧之后厚度偏差提高到30μm以内,满足自动厚度控制系统(AGC)的控制要求,提高了产品的成材率.并给出了弹跳方程稳态误差的普遍求解方案,模型在线使用效果良好,适于工业推广.  相似文献   

17.
UCMW轧机的边缘降控制性能和影响因素分析   总被引:1,自引:1,他引:0  
建立了UCMW冷连轧机辊系与轧件一体化仿真模型. 由工作辊弯辊、中间辊弯辊、工作辊轴向移位、中间辊轴向移位确定不同仿真工况,分析了各调控手段对带钢中心凸度和边缘降的调控能力. 详细研究了带钢厚度、张力、压下率、变形抗力等对边缘降的影响. 结果表明,工作辊弯辊对带钢中心凸度的控制能力最强,工作辊轴向移位对带钢边缘降的控制能力最强,各影响因素对边缘降的影响程度都大于对中心板凸度的影响. 说明带钢边部对轧制因素的变化更敏感.  相似文献   

18.
根据铸轧板形缺陷的表征特点及其评价指标 ,采用铸轧板带的横向板厚分布作为板形控制信号 ,并依此建立了铸轧板形的数学描述 .基于铸轧工艺的特点 ,在铸轧板形实测信号中通常包含铸轧带材横向温差及板凸度所致的两种附加干扰 ,通过具体分析两种附加干扰对铸轧板形测控的影响 ,分别建立了附加温差板形补偿模型和附加板凸度板形补偿模型 .针对某铸轧机实轧工况 ,运用所建补偿模型求得了横向板厚的补偿值 ,并直接对板形检测信号进行修正 ,以期提高板形控制精度 ,避免板控执行机构的误操作 .实测结果表明所建补偿模型正确 ,且处理方法简单 ,可直接用于铸轧板形的控制 .图 1,表 1,参 10  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号