首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the long-term monitoring data on CO2 concentration, variation trend and characteristics of CO2 background concentration in the atmosphere over the Chinese mainland are analyzed. Results show that the increasing trend of CO2 background concentration in the atmosphere over the Chinese mainland has appeared during the period of 1991-2000. The average annual CO2 growth increment is 1.59 μL/L, and the average annual CO2 growth rate is 0.44%. Distinct seasonal variations of CO2 background concentration are observed, and the averaged amplitude of CO2 seasonal variations is 10.35 μL/L. Regional variation characteristics of CO2 background concentration in the atmosphere and possible impact of human activities on these variations over the Chinese mainland are discussed as well.  相似文献   

2.
The concentration of atmospheric CO2 in Beijing increased rapidly at a mean growth rate of 3.7% · a−1 from 1993 to 1995. After displaying a peak of (409.7±25.9) μmol · mol−1 in 1995, it decreased slowly. Both the almost stable anthropogenic CO2 source and increasing biotic CO2 sink contribute to the drop of CO2 concentration from 1995 to 2000. The seasonal variation of CO2 concentration exhibits a clear cycle with a maximum in winter, averaging (426.8±20.6) μmol · mol−1, and a minimum in summer, averaging (369.1±6.1) μmol·mol−1. The seasonal variation of CO2 concentration is mainly controlled by phenology. The mean diurnal variation of atmospheric CO2 concentration for a year in Beijing is highly clear: daily maximum CO2 concentration usually occurs at night, but daily minimum CO2 concentration does in the daytime, with a mean diurnal difference more than 34.7 μmol·mol−1. It has been revealed that the interannual variations of atmospheric CO2 concentration in winter and autumn regulated the interannual trend of atmospheric CO2, whereas the interannual variation of CO2 concentration in summer affected the general tendency of atmospheric CO2 in a less degree.  相似文献   

3.
Mid-troposphere CO2 data retrieved by the AIRS (atmospheric infrared sounder) were validated with five ground-based stations and aircraft measurements in the Northern Hemisphere. AIRS CO2 products show good agreement with ground and aircraft observations. The data had a monthly average accuracy better than 3 ppmv. In this study, the spatial and temporal distribution of mid-troposphere CO2 from January 2003 to December 2008 was analyzed based on this satellite product. The average concentration of atmospheric CO2 was higher in the Northern Hemisphere than in the Southern Hemisphere. The yearly average results show a gradual increase from 2003 to 2008. In China, the annual growth rate was about 2 ppmv/a, similar to the United States, Europe, Australia and India, but was slightly lower than Canada and Russia. Mid-troposphere CO2 concentrations were higher over northern China than over southern areas, due to differences in natural conditions and industrial layout. There were four centers of high CO2 concentration between 35° and 45°N over China, with low concentrations over Yunnan Province. There was a significant seasonal CO2 variation with peak concentration in spring and the lowest concentration in autumn.  相似文献   

4.
Conclusions The initial slope of A/ light curve became steep under high CO2 (700 μmol · mol-1) compared with that under low CO2 (350 μmol · mol-1) for the C3 species growing in very high CO2(>2 200 μmol · mol-1) for a long period. The light compensation points remained unchanged, but the light saturation points were found increased. The ϕm,app and Amax of the C3 species increased respectively by 79 % and 80 %, while those of C4 species decreased by 10% and 14%, respectively. The shape of A/light curve of C4 species did not change. Such results indicated that C3 species increased the capacity of photosynthesis, while C4 did not change, otherwise it decreased a little. This work only compared the changes of capacity in photosynthesis of some species under different CO2 levels in Biosphere 2. We need further investigation on the effects of high CO2 on the same species outside Biosphere 2, in order to fully undertand the effects and mechanism of response of plants to the elevated CO2.  相似文献   

5.
Terrestrial carbon cycling is one of the hotspots in global change issues. In this paper, we presented the rationale for determination of net exchange of CO2 between terrestrial and the atmosphere (NEE) and the methods for measuring several relevant components. Three key processes for determination of NEE were addressed, including the separation of shoot autotrophic respiration from total CO2 emissions of the ecosystem, the partition of root respiration from soil CO2 efflux, and the quantification of rhizodeposition C from NPP. With an understanding of the processes involved in the CO2 exchange between terrestrial and the atmosphere, we estimated NEE of rice ecosystem in Nanjing based on field measurements of CO2 emissions and several relevant biotic components as well as abiotic factors. The field measurements of CO2 emissions were made over the rice-growing seasons in 2001 and 2002 with the static opaque chamber method. Calculations indicated that the seasonal pattern of NEE is comparable for two seasons. Either net carbon emission or fractional carbon fixation occurred during 3 weeks after rice transplanting and thereafter net carbon fixation appeared with an increasing trend as rice growing. Higher net carbon fixation occurred in the rice developmental period from elongating to heading. A decline trend in the fixation was documented after rice heading. The mean daily NEE was -6.06 gC·m−2 in 2001 season and -7.95 gC·m−2 in 2002 season, respectively. These values were comparable to the results obtained by Campbell et al. who made field measurements with the Bowen ratio-energy balance technique in irrigated rice, Texas USA. Moreover, the mean daily NEE in this study was also comparable to the values obtained from a Japanese rice paddy with the eddy covariance method under the similar water regime, either drainage course or waterlogged. It is concluded that NEE determined by the static opaque chamber method is comparable and in agreement with those measured by Bowen ratioenergy balance and eddy covariance methods.  相似文献   

6.
The responses of rice to the second degree contamination of copper were studied by pot experiments under free-air CO2 enrichment (FACE) with 570 μmol ·mol^-1 of CO2. The results showed that the content of copper in rice leaves was reduced with the CO2 concentration reaching 570 μmol· mol^-1 and this happened more significantly under the second degree contamination of copper. Under FACE, activities of superoxide dismutase (SOD) enzyme in rice leaves treated by copper contamination were induced, whereas the contents of glutathione (GSH) and glutathione disulfide (GSSG) had no significant difference from the control. In the presence of ambient CO2, activities of SOD enzyme treated by copper pollution were suppressed during the whole rice growth, however, the contents of GSH and GSSG were induced at tillering and jointing stages, and then restored to the control levels in later growth under the second degree contamination of copper. With the rice growing, the content of malondialdehyde (MDA) rises continuously, but there had been no significant difference between the treatments at the same growth stage. Further studies are needed on the response mechanism of rice to Cu stress under elevated CO2.  相似文献   

7.
To examine the reliability of using tree ring δ13C and the model of isotopic fractionation in reconstructing atmospheric CO2 levels, we studied the variations of some important parameters of several subtropical species under natural field conditions. It was found that, different from other researchers’ results, leaf conductance to CO2 transfer, g, did not change in proportion to the change in rate of CO2 assimilation, A, with the result that intercellular concen- tration of CO2, Ci, could not keep constant. Thus, we conclude that the use of tree-ring isotope ratios in the reconstruction of atmospheric CO2 variation based on the presupposition that Ci keeps constant during assimilation is not reliable under current circumstances.  相似文献   

8.
We carried out a downscaling treatment over China using the CarbonTracker numerical model, which was applied using double grid nesting technology (3° × 2° over the whole globe, 1° × 1° over China), simulating and analyzing atmospheric CO2 concentrations over 10 recent years (2000–2009). The simulation results agreed very well with observed data from four background atmospheric monitoring stations in China (The periods for which the simulation results and observed values be compared were January 2000 to December 2009 for the WLG station and June 2006 to December 2009 for the SDZ, LFS, and LAN stations), giving correlation coefficients of >0.7. The high-resolution simulation data correlated slightly better than the low resolution simulation data with the observed data for three of the regions’ atmospheric background stations. Further analysis of the annual, seasonal CO2 concentration variations at the background stations showed that the CO2 concentration increased each year over the study period, with an average annual increase of more than 5%, and annual increases of more than 7% at the Shangdianzi and Lin’an stations. Seasonal CO2 variations were greater at the Longfengshan station than at the Shangdianzi or Lin’an stations. However, the CO2 concentrations were higher at the Shangdianzi and Lin’an stations because they are greatly affected by human activities in the Jingjinji and Changjiang Delta economic zones. Spatial distribution in CO2 concentrations and fluxes were higher in eastern than in western China.  相似文献   

9.
Solid lithium ion conducting electrochemical cells using LiSiPO as solid electrolyte and Li2CO3 mixed with Au as electrodes were prepared and employed as chemical sensors for the detection of CO2 gas. The EMF of the cell depends on the concentration of CO2 in air according to the partial pressure dependence of Nernst’s law in the investigated range from 100 to 2000 ppm over the temperature range from 473 K to 673 K.  相似文献   

10.
通过精确的LBLRTM逐线积分模式建立CO_2体积分数变化模型,分析了CO_2的温室效应饱和度,并对未来地表温升的变化趋势进行了预测.结果表明,目前CO_2的持续排放只能使其在680cm~(-1)强吸收带中心达到饱和,而在未来相当长一段时间内,其仍将通过该吸收带的翼区以及1 000cm~(-1),1 350cm~(-1)与1 900cm~(-1)等弱吸收带对地表红外辐射表现出强烈的吸收,CO_2的温室效应还远未达到饱和;如果按照当前CO_22.2(mL/·m~(-3))/a的年排放速率,CO_2的大气体积分数将会持续增加,从而造成地表温度不断升高,到2056年,地表温升将会达到2K.  相似文献   

11.
Fractal geometry was applied and box dimension was used as an indicator to analyze the effects of doubled CO2 concentration on the root growth of plant seedlings. Results showed that doubled CO2 concentration displayed different effects on root branching characteristics of C3 and C4 plants. There was an obvious increase of root branches in spring wheat while there were no significant effects on roots of sweet sorghum. In different soil layers, root branching of spring wheat was stimulated and this promotion was most significant in the second layer (10–20 cm), which denoted that elevated CO2 altered the root branching pattern. That means higher CO2 concentration influences not only root growth but also its differentiation and development.  相似文献   

12.
The association between the Siberian Traps, the largest continental flood basalt province, and the largest-known mass extinction event at the end of the Permian period, has been strengthened by recently-published high-precision 40Ar/39Ar dates from widespread localities across the Siberian province[1]. We argue that the impact of the volcanism was amplified by the prevailing late Permian environmental conditions―in particular, the hothouse climate, with sluggish oceanic circulation, that was leading to widespread oceanic anoxia. Volcanism released large masses of sulphate aerosols and carbon dioxide, the former triggering short-duration volcanic winters, the latter leading to long-term warming. Whilst the mass of CO2 released from individual eruptions was small compared with the total mass of carbon in the atmosphere-ocean system, the long ‘mean lifetime’ of atmospheric CO2, compared with the eruption flux and duration, meant that significant accumulation could occur over periods of 105 years. Compromise of the carbon sequestration systems (by curtailment of photosynthesis, destruction of biomass, and warming and acidification of the oceans) probably led to rapid atmospheric CO2 build-up, warming, and shallow-water anoxia, leading ultimately to mass extinction.  相似文献   

13.
The control of particulate matter (PM) emissions from coal combustion becomes an urgent work due to their adverse effects on human health. Coal blending is a promising option for submicron particulate (PM1) reduction. This study addressed the effects of coal blending on the formation and properties of particulate matter in combustion process. Coal blends from lignite and bituminous coal, with different blend ratios (9:1, 7:3, 5:5, 3:7 and 1:9), were combusted in a drop tube furnace. The mass size distribution, concentration, elemental composition and morphology of the particulate matter generated under O2/N2 and O2/CO2 conditions were characterized. Particulate matter was collected by a low pressure impactor (LPI), which aerodynamically segregated particulates into thirteen fractions with sizes ranging from 0.03 to 9.8 μm. The results showed that coal blending reduced PM1 generation, compared with the calculated average values from the combustion of constituent coals. This indicated that the mineral interactions had a great effect on PM1 reduction. The blend ratio also played an important role in the suppression of PM1 generation. In this experimental study, PM1 generation suffered a maximum suppression at the blend ratio of 7:3. The O2/CO2 atmosphere affected the formation and properties of the PM1 during coal blends combustion. Compared with the O2/N2 combustion, the interaction of minerals was weakened under O2/CO2 combustion, thus the suppression of PM1 generation decreased after coal blending. Compared with the calculated values, the concentrations and percentages of Ca, Fe in PM1 decreased, but the concentrations of Ca, Fe, Si and Al in coarse particulates (PM10+) increased after coal blends combustion. The interactions between the aluminosilicates in the bituminous coal and volatile elements Ca, Fe in the lignite were thought to contribute to the suppression of PM1 generation during the com-bustion of coal blends.  相似文献   

14.
Field measurements of air-sea CO2 exchange in three coral reef areas of the South China Sea (i.e. the Yongshu Reef atoll of the Nansha Islands, southern South China Sea (SCS); Yongxing Island of Xisha Islands, north-central SCS; and Luhuitou Fringing Reef in Sanya of Hainan Island, northern SCS) during the summers of 2008 and 2009 revealed that both air and surface seawater partial pressures of CO2 (pCO2) showed regular diurnal cycles. Minimum values occurred in the evening and maximum values in the morning. Air pCO2 in each of the three study areas showed small diurnal variations, while large diurnal variations were ob-served in seawater pCO2. The diurnal variation amplitude of seawater pCO2 was ~70 μmol mol–1 at the Yongshu Reef lagoon, 420–619 μmol mol–1 on the Yongxing Island reef flat, and 264–579 μmol mol–1 on the reef flat of the Luhuitou Fringing Reef, and 324–492 μmol mol–1 in an adjacent area just outside of this fringing reef. With respect to spatial relations, there were large differences in air-sea CO2 flux across the South China Sea (e.g. ~0.4 mmol CO2 m–2 d–1 at Yongshu Reef, ~4.7 mmol CO2 m–2 d–1 at Yongxing Island, and ~9.8 mmol CO2 m–2 d–1 at Luhuitou Fringing Reef). However, these positive values suggest that coral reef ecosystems of the SCS may be a net source of CO2 to the atmosphere. Additional analyses indicated that diurnal variations of surface seawater pCO2 in the shallow water reef flat are controlled mainly by biological metabolic processes, while those of deeper water lagoons and outer reef areas are regulated by both biological metabolism and hydrodynamic factors. Unlike the open ocean, inorganic metabolism plays a significant role in influencing seawater pCO2 variations in coral reef ecosystems.  相似文献   

15.
设计了星载CO2探测频率步进扫描积分路径差分吸收(IPDA)激光雷达,弥补了欧洲航天局A-SCOPE项目单波长CO2探测IPDA激光雷达对波长依赖性较强等不足.仿真计算了一个扫描周期内的激光雷达回波信号和系统的相对随机误差、大气压强不确定性误差以及频率不稳定性误差.当频率步进扫描到on-line波长为6 361.235 0 cm-1时,在海面反射率为0.035 sr-1、大气压强不确定性为0.001以及激光频率不稳定性为0.3 MHz条件下,系统综合相对误差为0.084 2%.结果表明,采用频率步进扫描方法结合IPDA激光雷达技术探测大气CO2浓度不仅可以观察到相对误差随on-line波长变化的关系,而且可以有效地减小测量误差,使其小于0.5×10-6.   相似文献   

16.
The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CAext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physio-logical response to different CO2 concentrations under either a low (30 靘ol·m-2·s-1) or high (210 靘ol·m-2·s-1) irradiance. The changes in CO2 concentrations (4—31 靘ol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light re-gime. CAext was detected in the cells grown at 4 mol/L CO2 but not at 31 and 12 靘ol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells de-creased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CAext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the de-velopment of higher CAext activity and CO2 affinity under higher light level could sufficiently support the photosyn-thetic demand for CO2 even at low level of CO2.  相似文献   

17.
为了深入了解混相调节剂降低CO_2/原油最小混相压力的作用,测试CO_2混相调节剂降低最小混相压力的机理,开展了室内实验,并深入研究调节剂的效果。实验结果表明,混相调节剂可以降低CO_2/原油表面张力、促进CO_2抽提原油轻质组分效果、增加CO_2在原油中溶解度、降低原油黏度的作用;其中,主要的机理为降低表面张力和提高抽提轻质组分效果;当原油中调节剂质量浓度达0.3%以上,气液表面张力消失,达到混相;加入调节剂后,采出端气体突破时,CO_2萃取、抽提轻质烃体积百分数增加14倍以上。调节剂作用机理研究,深入了对调节剂改善CO_2驱油效果的认识,并对进一步筛选和研发新型调节剂具有指导意义。  相似文献   

18.
Southern Hemisphere mid-latitude westerlies contribute to the ventilation of the deep Southern Ocean (SO), and drive changes in atmospheric carbon dioxide (CO2) and the global climate. As the westerlies control directly oceanic fronts, the movement of the subtropical front (STF) reflects the westerlies migration. Thus it is important to understand the relationships between STF movement and the weaterlies, ventilation of the deep SO, ice volume and atmospheric CO2. To this end, we use two new high-resolution records from early Marine Isotope Stage (MIS) 20 (~800 ka) of sea surface temperature (SST) based on Uk’ 37 paleo-thermometer and benthic oxygen isotope (δ18OB) at Ocean Drilling Program (ODP) Site 1170B in the southern Tasman Sea (STS), to construct linkages between the marine records and atmospheric proxies from Antarctic ice-cores. During the last 800 ka, the average SST (10.2°C) at Site 1170B is 1.8°C lower than today (annual average 12°C). The highest average SST of 11.6°C occurred during MIS 1, and the lowest average SST of 7.8°C occurred during MIS 2. The warmest and coldest records of 14.7°C and 6.2°C occurred in the MIS 5 and MIS 2, respectively. In the glacial-interglacial cycles of the last 800 ka, variability of reconstructed SST shows that the STF moved northward or southward more than 3° of latitude compared with its present location. In the warmest stage MIS 5, the STF shifted to its southernmost location of ~49°S. In contrast, in the coldest stage MIS 2, the STF moved to its northernmost location of ~43°S. In response to orbital cycles, the westerlies movement led ice volume and atmospheric CO2 changes, but it was in phase with change in Antarctic atmospheric temperature. Ice volume only preceded atmospheric CO2 only a little at the 23-ka precession band, lagged the atmospheric CO2 at the 100-ka eccentricity band, and was in phase with atmospheric CO2 at the 40-ka obliquity band.  相似文献   

19.
湿化学法同步脱除烟气中气态污染物是燃烧源大气污染控制的重要方法之一,为探究采用不同氧化吸收策略同时脱除燃烧烟气中SO_2,NO_x和CO_2的可行性,基于化学热力学原理,分析了9种联合氧化吸收策略的性能,具体的氧化吸收策略包括:H_2O_2-NH_3·H_2O,H_2O_2-MDEA,H_2O_2-NaOH,O3-NH_3·H_2O,O3-MDEA,O3-NaOH,NaClO_2-NH_3·H_2O,NaClO_2-MDEA和NaClO_2-NaOH,并提出新的动态加权法对其性能进行综合评价。结果表明:上述所有策略均具有SO_2,NO_x和CO_2捕获的可行性。O3-NaOH,NaClO_2-MDEA和NaOH做吸收剂的氧化吸收溶液分别对单一脱硫、脱硝和脱碳效果最好。当综合考虑同步脱除SO_2,NO_x和CO_2时,NaClO_2-MDEA优于其他策略,其结果可为燃烧烟气中的气体污染物的联合脱除提供参考。  相似文献   

20.
以硝酸铈为前驱物,以尿素为助剂,采用一种简单的模板法合成了介孔氮掺杂CeO2材料.利用X射线衍射仪(XRD)、吸附-脱附仪(BET)、透射电子显微镜(TEM)和傅里叶变换红外光谱(FT-IR)等设备对合成材料进行表征.多种测试结果证明:试验得到的纳米材料具有均一的介孔结构和较高的比表面积(124.8 m2·g-1)并掺杂了氮元素.同时,测定了介孔CeO2材料对于CO2的吸附性能,并研究了氮掺杂对CeO2材料的CO2吸附性能的影响.结果表明:相比未掺杂氮的介孔CeO2,氮掺杂的介孔CeO2具有更好的CO2吸附性能和循环吸附脱附性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号