首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
K-means初始聚类中心优化算法研究   总被引:1,自引:1,他引:1       下载免费PDF全文
由于K-means算法对初始中心的依赖性而导致聚类结果可能陷入局部极小,而采用密度函数法的多中心聚类并结合小类合并运算的聚类结果明显优于K-means的聚类结果。该算法的每一次迭代都是倾向于发现超球面簇,尤其对于延伸状的不规则簇具有良好的聚类能力。  相似文献   

2.
《河南科学》2016,(3):348-351
传统K-means聚类算法中聚类初始中心点是随机确定的,实际聚类数据集中可能有孤立点,造成了每次聚类的结果不同,聚类质量不同,有时陷入局部优化状态.针对这些问题,研究者曾试图用距离法解决孤立点的判断和确定初始聚类中心.这种思路存在不科学性.因为孤立点不仅指远离其他点,同时它的周围点稀疏;另外,当数据量过大、数据特征值过多时,算法的运算量大,需要占用大量的计算机资源,运算速度过慢.对传统的K-means聚类算法进行研究,提出了基于密度参数和距离理论的初始聚类中心的确定和孤立点的判断,对传统的K-means聚类算法进行改进.  相似文献   

3.
一种改进的K-means聚类算法   总被引:1,自引:0,他引:1  
传统的K-means聚类算法对初始聚类中心的依赖程度很大,聚类结果会随聚类中心的选择不同波动很大,为了消除这种中心选择不确定性,提出一种改进的K-means聚类算法,从而有效地改善初始聚类中心点选择的随机性,提高聚类结果的稳定性.仿真实验结果表明,改进后的K-means聚类算法优于传统的算法.  相似文献   

4.
K-means聚类算法具有实现简单、普及性强的优势,但存在聚类中心选取随意性强的劣势.文章提出增加一个密度变量的方式来选出合理的初始聚类中心,通过对校园网上热点话题聚类分析的实验,检验出改进K-means聚类算法聚类效果好.  相似文献   

5.
K-means聚类算法是近年来数据挖掘学科的一个研究热点和重点,该算法是基于划分的聚类分析算法.目前这种算法在聚类分析中得到了广泛应用。本文将介绍K-means聚类算法的主要思想,及其优缺点。针对该算法经常陷入局部最优,以及对孤立点敏感等缺点,提出了一种基于模拟退火算法的方法对其进行优化,可以有效地防止该算法陷入局部最优的情况。  相似文献   

6.
介绍K-means聚类算法推导过程,并给出利用Python实现K-means算法的程序,以进行验证.  相似文献   

7.
K-means聚类算法研究   总被引:1,自引:0,他引:1  
K-means算法作为聚类分析算法,已被广泛地应用到诸多领域。本文研究了K-means算法的基本原理,并将其应用到高校学生入学信息分析中。高考学生入学的相关信息包含了大量重要的学习及其他方面的信息,对这些数据信息进行分析和研究,有助于教师对不同类别的学生进行不同方式的教学,做到因材施教。首先对学生的入学信息数据进行预处理,然后使用K-means算法,对学生信息进行分类评价;最后利用所获得的分类结果指导学生在大学期间的学习方向以及教师对学生的培养工作。  相似文献   

8.
K—means聚类算法的研究   总被引:5,自引:0,他引:5  
为解决原始K-means算法随机选取初始聚类中心对聚类结果的影响较大的不足,提出了改进算法.采取基于采样选取聚类中心距离的规则,进行多次选择决定最终的初始聚类中心,使得改进后的算法受初始聚类中心选择的影响达到最小;同时,在选取初始聚类中心后,对初值进行数据标准化处理.将改进的K-means算法应用于销售行业,结果显示,改进后的算法比原始的算法在效率上得到了提高.  相似文献   

9.
原始的k-means算法是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度.  相似文献   

10.
针对原始K-means算法的一系列问题,提出一种基于半监督的K-means聚类改进算法,能够自动进行聚类,找出最优K值,并且最大限度地找出孤立点.首先根据样本集自身的特点,按照"类内尽可能相似"原则一步一步形成数据集,然后对数据集进行"去噪"与合并相似簇,最后,利用少量的标记信息指导和修正聚类结果.在UCI的多个数据集...  相似文献   

11.
为解决传统 K-means 算法中因初始聚类中心选择不当而导致聚类结果陷入局部极值的问题, 采用蝙蝠算法搜寻 K-means 算法的初始聚类中心, 并将模拟退火的思想和基于排挤的小生境技术引入到蝙蝠算法中, 以克服原始蝙蝠算法存在后期收敛速度慢、 搜索力不强等问题。 同时, 通过测试函数验证了其有效性。 最后利用改进后的蝙蝠算法优化 K-means 算法的初始聚类中心, 并将该改进的算法与传统的 K-means 算法的聚类结果进行了对比。 实验结果表明, 改进后的算法的聚类性能比传统的 K-means 算法有很大提高。  相似文献   

12.
K-均值算法中聚类个数优化问题研究   总被引:5,自引:1,他引:5  
在传统的K-均值聚类算法中,聚类数K必须事先给定,然而,实际中K值很难被精确的确定,K值是否合理直接影响着K-均值算法的好坏。针对这个缺点,提出一种优化聚类数算法,根据聚类算法中类内相似度最大差异度最小和类间差异度最大相似度最小的基本原则,构建了距离评价函数F(S,K)作为最佳聚类数的检验函数,建立了相应的数学模型,并通过仿真实验进一步验证了新算法的有效性。  相似文献   

13.
Gustafson- Kessel( GK) 聚类算法可以有效地搜索超椭球、平面和线型的数据类,但仍然存在对初始聚类中心较敏感、易于陷入局部最优的缺陷.为此,文中根据鱼群觅食与聚类的相似性,利用人工鱼群( AFS) 算法对聚类中心进行初始化,提出了改进的G- K 聚类算法,并利用人工数据集和IRIS 数据集进行仿真研究.结果表明,文中算法能有效地发现数据集中的聚类结构,聚类效果优于GK 聚类算法.  相似文献   

14.
一种新的密度加权粗糙K-均值聚类算法   总被引:1,自引:0,他引:1  
为了克服粗糙K-均值聚类算法初始聚类中心点随机选取,以及样本密度函数定义所存在的缺陷,基于数据对象所在区域的样本点密集程度,定义了新的样本密度函数,选择相互距离最远的K个高密度样本点作为初始聚类中心,克服了现有粗糙K-均值聚类算法的初始中心随机选取的缺点,从而使得聚类结果更接近于全局最优解。同时在类均值计算中,对每个样本根据定义的密度赋以不同的权重,得到不受噪音点影响的更合理的质心。利用UCI机器学习数据库的6组数据集,以及随机生成的带有噪音点的人工模拟数据集进行测试,证明本文算法具有更好的聚类效果,而且对噪音数据有很强的抗干扰性能。  相似文献   

15.
一种改进的基于遗传算法的K均值聚类算法   总被引:2,自引:0,他引:2  
结合遗传算法和K均值聚类算法的优点,提出一种改进的基于遗传算法的K均值聚类算法.将遗传算法的编码方法、初始化、适应度函数、选择、交叉和变异等较好地应用于聚类问题,不仅解决了K均值聚类算法中K值难以确定、对初始值敏感以及遗传算法存在收敛性差和容易早熟的缺点,而且实现了聚类中心的优化选择、K值的自动学习和基因的自适应变异等...  相似文献   

16.
聚类分析作为数据挖掘中一个重要的组成部分,主要用于在潜在的数据中发现有价值的数据分布和数据模式。在研究基本蚁群聚类模型、信息熵以及LF算法和K-means算法的基础上,提出了一种蚁群聚类组合算法策略。  相似文献   

17.
针对传统K-means算法在初始质心选取的敏感性以及迭代计算的冗余性这两方面的缺陷,提出一种高效的聚类算法(ECA).根据数据对象的空间分布情况,首先采用空间划分预聚类算法(SDPCA)对数据集实现预聚类划分,然后采用基于邻近簇调整的优化聚类算法(OCANC)对预聚类成果进行优化处理,最终获取聚类成果.实验证明,该改进算法能消除对初始输入的敏感性,以更高的运行效率获取较高质量的聚类结果.  相似文献   

18.
为了探究面向汽车主动安全技术功能验证的测试场景的科学构建方法,构建符合真实交通状况的高保真测试场景。以自动紧急制动(autonomous emergency braking, AEB)系统为研究对象,以美国高速公路安全管理局事故数据库中筛选出的AEB系统功能适用的6 639起道路交通事故为研究样本,通过机器学习方法实现了由事故数据到测试场景的科学转换。针对传统聚类算法的缺陷,提出了基于层次聚类和K-means聚类相结合的融合聚类算法,并引入聚类曲线以开展事故数据样本的聚类分析。根据聚类获取的12类典型事故场景,构建了面向AEB系统功能验证的14种测试场景。结果表明:相比于传统的K-means聚类算法,融合聚类算法平均减少了8次迭代次数;聚类结果平均减少3%的波动;实现事故数据样本的科学准确聚类且提升数据聚类效率。所提出的测试场景在实现对现有AEB测试场景有效覆盖的同时,为标准测试场景的进一步扩充提供了有力支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号