共查询到17条相似文献,搜索用时 42 毫秒
1.
冲激脉冲(impulse radio, IR)超宽带(ultra-wideband, UWB)穿墙雷达因其良好的穿透性和距离分辨率在穿墙人体行为识别领域具有重要作用,但是常规识别方法仅采用单域特征对行为模式进行描述,识别准确率不高。针对这一问题,提出基于时频域特征融合的IR-UWB穿墙雷达人体行为识别算法。首先,通过杂波抑制及距离补偿方法获取高信噪比的人体行为距离像。其次,基于距离像提取目标时域特征,与频域特征进行融合,构建数据集。最后,基于支持向量机(support vector machine, SVM)算法对人体行为进行识别。实验结果表明,所提算法对于IR-UWB穿墙雷达人体行为识别能够达到95%的准确率。 相似文献
2.
一种集成logistic回归与支持向量机的判别分析规则 总被引:1,自引:0,他引:1
支持向量机的输出结果可以通过几何分析划分为六个连续的区间,并求得各个区间内训练样本的错误分类频率.本文以二分判别为例,将每个区间上的误分频率与logistic回归对预测样本的输出概率进行比较,提出了一种集成logistic回归与支持向量机的判别分析规则,并采用支持向量机效果验证的基准数据集进行实证分析.实证结果验证了所提出方法的有效性. 相似文献
3.
基于direct LDA的幅度谱子空间雷达目标识别 总被引:1,自引:1,他引:1
针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA& SVM.先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-a11支撑向量机(SVM)多类分类器进行目标识别.并设计了最短距离分类器与SVM分类器比较.基于外场实测数据的实验结果表明,与LDA幅度谱子空间法,幅度谱原空间法相比,dLDA & SVM可显著降低数据维数并提高识别性能. 相似文献
4.
基于支持向量机的信息融合诊断方法 总被引:6,自引:1,他引:6
提出了一种采用小波变换进行特征提取、支持向量机进行模式分类的多传感器信息融合诊断方法。该方法首先对多传感器的信息进行加权初级融合,接着利用小波变换的时频局部特性和多尺度、多分辨特性对传感器测量信号进行特征提取,最后利用支持向量机进行分类实现信息的特征级融合和分类。将其应用于某转子实验台的故障诊断中,取得了令人满意的结果。 相似文献
5.
基于支持向量机的小波域图像水印算法 总被引:3,自引:1,他引:3
提出了一种新的基于支持向量机(support vector machine,SVM)的小波域图像水印算法。其主要思想是先对图像进行小波分解,然后利用图像小波分解后的子图系数之间的关系训练SVM,并利用训练好的SVM在小波域嵌入水印和提取水印。实验结果表明,提出的方法对于一般的图像处理和JPEG压缩都具有很强的鲁棒性,与基于SVM的空间域上的算法相比性能更加优越。 相似文献
6.
基于LS-SVM的特征提取及在凝点软测量中的应用 总被引:1,自引:0,他引:1
提出了一种基于最小二乘支持向量机(LS-SVM)回归算法的特征提取新方法,并将其成功应用于柴油凝点近红外(NIR)光谱软测量建模。在该方法中,将特征提取公式表达成与LS-SVM回归算法相同的形式,这样就能通过LS-SVM求取最优的特征投影向量。用一个含120个样本的401维柴油近红外光谱数据集进行测试,通过该方法提取后,原始光谱数据集的特征被降到了6维并保留了原有99.58%的信息。同时,用该数据建立的软测量模型具有更快的学习速度和更高的测量精度。实验结果验证了所提的特征提取新方法应用于近红外光谱特征提取的可行性和有效性。 相似文献
7.
8.
9.
基于支持向量机的中文文本自动分类研究 总被引:2,自引:0,他引:2
提出了一种基于支持向量机的文本自动分类方法,并进行了实验研究。在详细介绍了进行文本分类的实验过程和在实验中使用支持向量机的方法的基础上,通过实验比较了支持向量机算法和传统的KNN算法应用于文本分类的效果,并针对支持向量机算法的缺点,提出了进行文本预处理时的改进方法。实验结果表明了支持向量机在处理文本分类问题上的优越性。 相似文献
10.
基于线性卷积系数扩展特征的雷达目标识别 总被引:2,自引:2,他引:0
针对雷达目标高分辨距离像识别中的有效特征提取问题,提出了一种基于线性卷积系数扩展特征的雷达目标识别方法。该方法将高分辨距离像及其线性卷积系数扩展特征作为联合特征在核空间中进行特征选择,并采用支持向量机(support vector machine, SVM)作为分类器实现雷达目标识别。核空间中的特征选择可以解决联合特征高特征维数问题和非线性可分问题,进而提高SVM识别性能,而线性卷积系数扩展特征相比高分辨距离像具有更强的稳定性。同时,可以在一定程度上弥补因特征选择带来的高分辨距离像部分距离单元特征分量缺失。基于5种飞机目标高分辨距离像的仿真实验证明了该方法的有效性。 相似文献
11.
违约判别是信用风险评估的一种方式,提高违约判别精度一直是学界和业界重点关注的问题.本文从最优信用特征组合而不是最优指标组合的角度建立违约判别模型,提高违约判别精度.本文的创新有三个方面:一是以信息值最大为目标建立优化模型,将指标数据划分成能最大区分违约状态的多个信用特征.二是采用弹性网回归对信用特征进行遴选,反推违约判别误差最小的最优信用特征组合.三是以组间离散度与组内离散度之比最大为目标,构建数学规划,反推一组权重,得到线性判别方程.本文基于2000-2017年共2169家中国A股上市公司的数据进行实证,研究表明经过特征划分的线性判别分析、K近邻、支持向量机等模型的精度整体高于没有经过特征划分的模型精度. 相似文献
12.
为了解决手背静脉识别系统中图像的对比度较低且静脉结构简单的问题,首先提出一种基于自适应平滑滤波器的Retinex增强算法,在增强静脉结构的同时均衡了图像灰度;然后分析了静脉图像的小波分解子带图像和灰度积分投影,指出小波低频子带图像和垂直方向的灰度积分投影比较适合作为手背静脉识别的特征;进一步提取了基于逼近系数的小波不变矩特征,并融合形成了90维的手背静脉特征向量;最后建立SVM 分类器并利用手背静脉图像库进行实验,结果证明了该算法的识别优越性. 相似文献
13.
在通信辐射源信号有标签样本数量较小的情况下,同类通信辐射源个体信号特征提取困难且识别精度较低。对此,提出了一种小样本条件下的通信辐射源半监督特征提取方法。该方法对少量有标签通信辐射源信号样本以及大量无标签通信辐射源信号样本进行变分模态分解提取高维稳态信息熵,利用指数半监督判别分析法映射信息熵形成个体特征,并通过XGBoost进行通信辐射源个体识别来验证识别效果。实验表明,所提方法识别准确率达到85.33%,相比无监督特征提取方法运算时间降低了76.17%,证明其在同类通信辐射源不同个体识别中具有较好的性能。 相似文献
14.
在通信辐射源信号有标签样本数量较小的情况下,同类通信辐射源个体信号特征提取困难且识别精度较低。对此,提出了一种小样本条件下的通信辐射源半监督特征提取方法。该方法对少量有标签通信辐射源信号样本以及大量无标签通信辐射源信号样本进行变分模态分解提取高维稳态信息熵,利用指数半监督判别分析法映射信息熵形成个体特征,并通过XGBoost进行通信辐射源个体识别来验证识别效果。实验表明,所提方法识别准确率达到85.33%,相比无监督特征提取方法运算时间降低了76.17%,证明其在同类通信辐射源不同个体识别中具有较好的性能。 相似文献
15.
基于KFD+ICA特征提取的SAR图像目标识别 总被引:4,自引:0,他引:4
提出了一种用基于核函数的Fisher判别分析(kernel based Fisher discriminant analysis,KFD)和独立分量分析(independent component analysis,ICA)特征提取的合成孔径雷达(synthetic aperture radar,SAR)图像目标识别方法。用基于核函数的Fisher判别分析提取SAR图像样本在高维特征空间中的最佳分类向量,对最佳分类向量做独立分量分析,得到表征图像样本的特征向量,用支持向量机(support vector machine,SVM)对提取得到的特征向量分类完成目标识别。对MSTAR数据库中三类军事目标用该方法进行特征提取和识别实验,识别率为96.92%。结果表明,KFD ICA特征提取方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率。 相似文献
16.
图像矢量量化的等误差自组织特征映射算法 总被引:1,自引:0,他引:1
陈善学 《系统工程与电子技术》2004,26(9):1189-1191
提出了一种使各区域子误差相等的矢量量化算法,算法利用小波变换后各子带间的相关性,合理构造矢量。采用最优矢量量化器设计原则,使用改进的自组织特征映射算法生成码书。学习过程中,通过调整各子区域的误差,使之趋于相等,改善总的期望误差,获得更接近全局最优的码书。实验表明,这种算法获得的码本优于其它几种算法。 相似文献
17.
基于信号包络的辐射源细微特征提取方法 总被引:11,自引:0,他引:11
雷达信号体制和调制样式的多样化,信号环境的复杂化,使得常规的识别方法很难适应实际需要,无法有效地对雷达辐射源信号进行分类识别。提出了一种结合小波变换技术的辐射源细微特征提取新方法。该方法克服了传统包络分析方法的缺点,提高了提取信号包络信息的精度。最后通过辐射源个体识别实例说明了这种方法提取的细微特征是有效的。 相似文献