共查询到16条相似文献,搜索用时 46 毫秒
1.
通过分别考虑基于HRRP一阶统计特性的MCC-TMM(模板匹配分类器)和基于HRRP一阶和二阶统计特性的AGC(自适应高斯分类器),提出了两种新的特征提取方法,使得针对不同的分类器采用不同的特征提取方法,从而更好地滤除HRRP上的高斯噪声和更好地保持不同目标HRRP具有不同的幅度分布即HRRP的可分性。基于外场ISAR和微波暗室两种实测数据的识别实验表明,提出的特征提取方法能够明显提高识别性能。 相似文献
2.
基于线性卷积系数扩展特征的雷达目标识别 总被引:2,自引:2,他引:0
针对雷达目标高分辨距离像识别中的有效特征提取问题,提出了一种基于线性卷积系数扩展特征的雷达目标识别方法。该方法将高分辨距离像及其线性卷积系数扩展特征作为联合特征在核空间中进行特征选择,并采用支持向量机(support vector machine, SVM)作为分类器实现雷达目标识别。核空间中的特征选择可以解决联合特征高特征维数问题和非线性可分问题,进而提高SVM识别性能,而线性卷积系数扩展特征相比高分辨距离像具有更强的稳定性。同时,可以在一定程度上弥补因特征选择带来的高分辨距离像部分距离单元特征分量缺失。基于5种飞机目标高分辨距离像的仿真实验证明了该方法的有效性。 相似文献
3.
基于direct LDA的幅度谱子空间雷达目标识别 总被引:1,自引:1,他引:1
针对高分辨距离像(HRRP)可分性低和维数高的问题,提出一种新的雷达自动目标识别(RATR)方法:dLDA& SVM.先采用直接线性判别分析在HRRP的幅度谱空间进行特征提取,然后在子空间中采用角域均值模板库训练one-against-a11支撑向量机(SVM)多类分类器进行目标识别.并设计了最短距离分类器与SVM分类器比较.基于外场实测数据的实验结果表明,与LDA幅度谱子空间法,幅度谱原空间法相比,dLDA & SVM可显著降低数据维数并提高识别性能. 相似文献
4.
基于复合特征及分层特征选择的雷达HRRP识别 总被引:1,自引:0,他引:1
雷达高分辨距离像(highresolutionrangeprofile,HRRP)具有方位敏感性、平移敏感性以及在特征空间高度交叠的特点,采用复合特征可以更好地描述目标特性。利用复合特征,结合分层识别结构提出了一种分层特征选择方法,充分利用了特征信息,简化了识别器结构,使识别运算量大大下降且提高了识别率。基于HRRP的平移不变特征和相关矢量机的计算机仿真实验表明,该方法是有效的。 相似文献
5.
雷达HRRP双门限在线统计识别方法 总被引:2,自引:0,他引:2
"边录取、边学习、边建模"是雷达高分辨距离像(high resolution range profile,HRRP)统计识别工程化的方法之一.在独立高斯模型假设下,推导了参数在线学习的公式,根据概率密度值提出一种双门限在线统计识别方法,首先设置门限SA剔除HRRP中的"环值",然后设置门限SB将数据分成几段,从而缓减模型与实时HRRP数据多模特性的失配.基于实测数据的仿真实验证明了本方法的有效性. 相似文献
6.
针对高分辨雷达距离像的方位敏感性问题,将应用于语音处理的动态时间弯折技术引入高分辨距离像雷达目标识别领域,提出了一种动态方位弯折技术,该技术通过将测试数据与模板特征序列进行非线性伸缩(弯折),获得测试帧与模板之间最小匹配距离对应的最佳匹配路径,实现对测试数据的目标识别。对ISAR实测飞机数据的分类实验及与模板匹配法和RBF识别方法的比较,获得了良好的识别结果,表明了该方法的可行性和有效性。 相似文献
7.
特征选择是雷达高分辨一维距离像目标识别的关键步骤,可降低特征维度,提高特征稳健性。提出一种基于散度的特征选择方法,采用该方法对适用于距离像地面目标识别的特征集合进行特征选择,得到优选的特征子集后再进入分类器网络进行识别。采用地面目标仿真数据和实测数据进行神经网络分类器识别实验。实验结果表明:在距离像信噪比、俯仰角和距离分辨力参数变化的情况下,基于散度的特征选择方法在基本保持或提升特征集的识别性能的前提下,能保持甚至提升识别的稳健性,具有较好的应用价值。 相似文献
8.
雷达高分辨距离像目标识别算法通常对目标回波的噪声大小比较敏感,如果测试样本和训练样本的信噪比不等,那么将会导致识别性能的下降。在实际应用中,需要识别算法在不同噪声强度下都能够保持稳健的性能,因此在概率主分量分析模型的基础上,提出一种稳健的雷达高分辨距离像自动目标识别算法。该算法能够让模型随着噪声强度的不同而自适应地调整其参数,并且分析了雷达数据的能量归一化处理对模型参数的影响。由于算法搜索时间较长,为提高算法的搜索效率,推导了一个快速算法。基于实测数据的仿真实验结果验证了方法的有效性, 对噪声有较好的稳健性。 相似文献
9.
针对特征空间中各类海面目标特征混叠严重和高分辨距离像(high resolution range profile, HRRP)的角度特征利用率低的问题,提出了一种基于角域特征粒子群优化(particle swarm optimization, PSO)的海面目标HRRP识别方法。该方法引入HRRP的角度信息优化特征空间,增加特征空间的整体可分性;利用自适应分帧算法对特征空间进行角域划分,增加特征空间的局部可分性,并利用PSO算法确定特征空间角域划分时最优的单帧最小样本数目,增强方法的鲁棒性与适用性。实验结果表明,通过将特征空间优化和区域划分进行结合,可以有效提升多类海面目标的分类识别性能,PSO算法可以有效增强方法的抗误差性和抗噪鲁棒性。 相似文献
10.
随着雷达技术的快速发展和军事应用的迫切需求,目标识别问题日益受到重视,利用高分辨率雷达一维距离像进行目标识别成为雷达和信号处理领域的一个研究热点。雷达目标一维距离像能够反映目标形状及结构特征,而且易于获取,迄今为止采用一维距离像进行非合作目标识别已经取得了丰富的研究成果。总结了近年来研究的基于目标一维距离像的特征提取方法、分类方法和联合跟踪与识别方法,分析了当前研究中亟需解决的关键问题,探讨了这些问题的可能解决思路和发展方向。 相似文献
11.
雷达高分辨距离像(high resolution range profile, HRRP)包含了丰富的目标结构信息,在雷达目标识别领域有良好的应用前景。针对传统的HRRP识别方法对噪声环境适应性差的问题,选用具有时移不变性的紧支撑小波自相关作为支持向量机(support vector machine, SVM)分类器的核函数,研究了幂次变换(power transform, PT)参数的选取对识别效果的影响,给出了参数选取经验公式,结合信噪比实时估算自适应地进行数据预处理以增强算法的抗噪性能。仿真表明,所提出的方法与传统的高斯径向基核SVM相比,提高了目标识别率,并且具有较好的噪声稳健性。 相似文献
12.
针对雷达高分辨距离像(high resolution range profile, HRRP)目标识别中有效表示和特征提取这一关键问题,提出了基于双谱-谱图特征和深度卷积神经网络(deep convolution neural network, DCNN)的识别方法。首先,提取HRRP的双谱-谱图特征表示作为CNN的输入。然后,通过网络训练提取出深层本质特征,实现对雷达目标的识别。最后,对不同特征表示的识别结果进行对比。采用卫星目标实测数据进行实验,结果表明,该方法可以准确有效地识别雷达目标,而且与其他常用特征表示相比,双谱-谱图特征表示具有更好的识别准确率和噪声鲁棒性。 相似文献
13.
基于复值HRRP CICA特征的多方位SAR目标识别 总被引:1,自引:0,他引:1
提出了一种基于雷达目标复距离像复值独立分量分析(complex independent component analysis, CICA)的合成孔径雷达(synthetic aperture radar, SAR)目标多方位散射特征提取和识别方法。根据雷达目标散射机理,将目标高分辨率复距离像建模为多个散射中心的复相干叠加。在分析复距离像的基础上,采用CICA方法实现了距离像中每个散射中心响应的分离。针对每个散射中心响应,利用高阶矩方法提取特征矢量。分类器基于隐马尔可夫模型(hidden Markov model, HMM)设计。采用美国运动和静止目标获取与识别(moving and stationary target acquistion and recognition, MSTAR)计划公开发布的目标实测数据进行算法实验,实验结果说明了提出方法具有较好的识别率。 相似文献
14.
基于深度学习的雷达目标识别方法近年来获得较大关注, 但实战中存在时效性约束和资源限制, 小样本识别难题大大限制其在实际识别任务中的性能。针对这一问题, 本文基于元学习算法, 通过从多个相关任务中学习到的元知识改善新任务的性能, 引入迁移学习思想, 提出一种改进的小样本学习方法, 并通过详细的性能对比实验分析了该方法的应用边界条件。基于实测高分辨距离像数据的实验结果表明, 元学习方法在历史积累样本所含目标类别较多, 与目标任务相关度较大的极小样本情况下, 性能优势才突出, 所提方法可显著提升其综合识别性能。 相似文献
15.
Qingyu Hou Feng Chen Hongwei Liu Zheng Bao National Lab of Radar Signal Processing Xidian University Xi’an P.R.China 《系统工程与电子技术(英文版)》2010,21(2):204-210
The mixture of factor analyzers (MFA) can accurately describe high resolution range profile (HRRP) statistical characteristics.But how to determine the proper number of the models is a problem.This paper develops a variational Bayesian mixture of factor analyzers (VBMFA) model.This procedure can obtain a lower bound on the Bayesian integral using the Jensen's inequality. An analytical solution of the Bayesian integral could be obtained by a hypothesis that latent variables in the model are independent.During computing the parameters of the model,birth-death moves are utilized to determine the optimal number of model automatically.Experimental results for measured data show that the VBMFA method has better recognition performance than FA and MFA method. 相似文献
16.
特征提取是基于高分辨距离像(high resolution range profile,HRRP)的雷达目标识别的关键技术之一.传统人工提取特征的算法,仅利用浅层结构特征,无法有效解决姿态敏感性问题,从而限制了目标识别方法的泛化性.对此,提出一种基于深度学习的目标识别方法,并通过详细的姿态角性能测试分析了该方法的应用边... 相似文献