共查询到10条相似文献,搜索用时 46 毫秒
1.
2.
3.
针对电动舵机结构,建立了一种考虑减速器等效刚度的舵机模型.利用描述函数法,分析了舵机在考虑传动间隙情况下诱导的极限环,进而分析了在有无舵片所受摩擦力情况下极限环的频率特性.针对该类传动非线性,提出了一种工程上可实现的负反馈力矩机制来改变舵机在间隙区间的运动模态,从而抑制极限环振荡,并且给出了负反馈系数的选取准则.最后进... 相似文献
4.
5.
一种新的RBF神经网络非线性动态系统建模方法 总被引:4,自引:0,他引:4
将遗传算法与正交优选法结合 ,用来训练径向基函数 ( RBF)神经网络 ,并对基函数宽度进行自动地调整 ,得到了一种训练 RBF神经网络的新方法 .将其应用于连续流体搅拌反应槽 ( CFSTR)生化反应器的建模中 ,得到了令人满意的结果 .该算法提高了径向基函数神经网络的泛化能力和鲁棒性 ,研究表明是一种有效的“黑箱”动态建模方法 相似文献
6.
Application of neural networks for permanent magnet synchronous motor direct torque control 总被引:1,自引:0,他引:1
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response. 相似文献
7.
基于正交函数网络的不确定混沌系统的控制 总被引:1,自引:0,他引:1
提出了基于正交函数网络的不确定混沌系统的自适应控制方法.通过利用计算简单、收敛速度快的单隐层正交函数神经网络,构建了一类不确定混沌系统的控制器.利用李雅普诺夫稳定性定理得到了该网络控制器的权值更新规则并保证了权值误差和跟踪误差的有界性.该控制器不仅能够保证混沌系统以有界误差对指定轨迹进行精确跟踪,也能够使有外部扰动的混沌系统快速跟踪一个指定的轨迹.最后,利用陈氏混沌系统和Lorenz系统进行了系统仿真,结果表明了该控制器在混沌控制中的有效性。 相似文献
8.
过程神经元网络常采用基于正交基展开的学习算法,以简化积分运算.分析对比了基于正交基展开和基于梯形公式两种不同积分方法,提出并证明了网络结构一定时,两种方法可以使网络达到相同的误差精度,并推论出积分运算方法不影响网络训练所能达到的误差精度.两种方法具有不同的适用情况,连续函数输入适合采用正交基展开法,在网络输入为离散等距采样点时,基于梯形公式的方法能够在不影响网络原始输入数据的前提下简化运算,避免了由原始数据构造拟合曲线或平滑插值,再进行正交基展开的过程. 相似文献
9.
针对目前惯性系统误差补偿模型对静态误差和动态误差处理能力不足的问题,为适应高超声速飞行器长航时、高精度的惯性导航要求,基于神经网络提出一种加速度计拟合模型。在高超声速飞行器飞行前期有准确的卫星导航信息时,收集导航信息和加速度计脉冲信息,利用神经网络强大的非线性拟合能力,在飞行过程中进行在线训练,得到精确的惯性系统模型。仿真结果表明,在存在逐次通电误差和不考虑二次项误差系数的误差补偿模型方法位置导航偏差在数公里和数百米量级的情况下,相同时间内所提方法的位置导航偏差仅为数十米量级,有效提高了高超声速飞行器的导航精度。 相似文献
10.
针对难以建立精确数学模型的地面站数传系统,提出改进梯度迭代学习的径向基神经网络建模方法。改进梯度学习算法通过训练样本相关性矩阵的主成分分析确定网络隐含层初始节点数;改进迭代过程中网络参数的梯度信息计算方式,加快了迭代收敛速度;并增加结构调整过程,实现对网络规模的精简。通过采集地面站数传系统输入-输出数据,将改进梯度学习算法应用于网络离线训练,并给出具体实现步骤。地面站数传资源配置优化实例验证了模型具有较高泛化能力,且算法稳定性较佳。 相似文献