共查询到20条相似文献,搜索用时 15 毫秒
1.
基于修正的自适应平方根容积卡尔曼滤波算法 总被引:1,自引:0,他引:1
目标建模不确定性会造成滤波算法性能下降,通过构建强跟踪滤波器(strong tracking filter,STF)可以提升滤波算法的自适应性,但是构建STF时存在理论推导复杂、求解计算量大等局限和不足,针对上述问题,在平方根容积卡尔曼滤波(square-root cubature Kalman filter,SRCK... 相似文献
2.
基于当前统计模型的机动目标自适应强跟踪算法 总被引:2,自引:0,他引:2
在当前统计模型卡尔曼滤波算法的基础上,结合升半正态形模糊分布函数特性,提出了一种加速度方差两段函数自适应调整方法,该方法能自适应逼近目标真实机动并进行准确跟踪。给出了最大加速度自调整方法,克服了模型对目标最大加速度的依赖。引入强跟踪滤波算法,增强了模型对突发机动自适应跟踪的能力。理论分析和仿真结果表明,该算法提高了机动模型和系统模式的匹配程度,增强了系统对强机动目标的跟踪能力,并保持对弱机动和非机动目标良好的跟踪性能,且具有运算量小、跟踪精度高、易于工程化实现等优点。 相似文献
3.
4.
一种新的自适应机动目标跟踪算法 总被引:1,自引:0,他引:1
在"当前"统计(CS)模型基础上,提出了一种新的机动目标自适应滤波算法,当前统计模型-修正强跟踪滤波(CS-MSTF)算法。新算法在保留"当前"统计模型及强跟踪滤波器(STF)对一般机动目标跟踪精度高的优点的同时,作出以下改进:针对强跟踪滤波器在机动部分获得完美性能的同时,非机动部分的精度却不理想的缺陷,对预测误差协方差及渐消因子的计算作出修正,同时改进机动部分和非机动部分的精度;将目前常用的估计误差协方差的计算公式采用更加可靠的Joseph公式,增强了数值的稳定性和算法的鲁棒性。蒙特卡罗仿真表明,新算法的性能优于当前统计模型-强跟踪滤波(CS-STF)算法,能够进行有效估计。Abstract: Based on the "current" statistical model,a new adaptive maneuvering target tracking algorithm,CS-MSTF,was proposed. The new algorithm,keeping the merits of high tracking precision that the "current " statistical model and strong tracking filter(STF) have in tracking maneuvering target has made the modifications as such:First,STF has the defect that it achieves the perfert performance in maneuvering segment at a cost of the precision in non-naneuvering segment,so the new algorithm modifies the prediction error covariance matrix and the fading factor to improve the tracking precision both of the maneuvering segment and non-maneuvering segment; The estimation error covariance matrix was calculated using the Joseph form,which is more stable and robust in numerical. The Monte-Carlo simulation shows that the CS-MSTF algorithm has a more excellent performance than CS-STF and can esitmate efficiently. 相似文献
5.
基于当前统计模型的机动目标自适应跟踪算法 总被引:2,自引:0,他引:2
当前统计模型及其自适应卡尔曼滤波算法对强机动目标具有很好的跟踪效果,但当机动目标为弱机动和非机动时算法跟踪性能较差。针对这一问题,提出了采用铃形函数作为模糊隶属函数对模型中加速度极值进行修正的自适应滤波算法,调整加速度稳定时的系统过程噪声方差,提高算法的跟踪精度。同时,借鉴强跟踪滤波算法的渐消自适应滤波因子思想,针对加速度突变的情况引入渐消因子对修正的加速度极值进行调节,提高算法在加速度突变情况下的跟踪速度。仿真实验结果表明,算法对弱机动目标和非机动目标的跟踪具有良好的效果。 相似文献
6.
非线性当前统计模型及自适应跟踪算法 总被引:1,自引:0,他引:1
针对当前统计模型中人为设定时间常数的倒数α值的不合理性,对机动参数α进行建模,并基于粒子滤波的思想,结合UKF滤波算法给出适用于强机动目标跟踪的CS-UKF算法。整个算法能够实时估计参数α,并从这里出发估计目标状态。仿真结果表明在目标强机动时CS-UKF算法比经典CS-KALMAN算法收敛速度更快,状态估计更精确。 相似文献
7.
基于Sage-Husa算法的自适应平方根CKF目标跟踪方法 总被引:1,自引:0,他引:1
在目标跟踪中,噪声的统计特性未知可能会引起滤波精度下降甚至发散,针对该问题,提出了一种新的自适应平方根容积卡尔曼滤波算法。所提方法在常规Sage-Husa算法的基础上采用容积规则,推导出了一种适用于非线性系统的自适应噪声统计估计器。仿真结果显示,相对于标准的平方根容积卡尔曼,所提方法在噪声统计特性未知或时变的情况下滤波精度有显著提高。 相似文献
8.
时变转移概率IMM-SRCKF机动目标跟踪算法 总被引:7,自引:0,他引:7
给出了一种交互多模型(interacting multiple model,IMM)算法中Markov转移概率矩阵在线修正的方法,并将平方根容积卡尔曼滤波器(square-root cubature Kalman filter,SRCKF)引入到IMM算法中,提出一种时变转移概率的机动目标跟踪IMM-SRCKF算法。该算法利用当前量测中包含的模式信息,对IMM算法中的转移概率矩阵进行实时递推估计,避免了常规IMM算法中转移概率先验确定的困难,提高了模型切换速度和跟踪精度;同时,SRCKF以目标状态协方差的平方根进行迭代更新,确保了滤波过程中协方差矩阵的对称性和半正定性,改善了数值精度和稳定性。仿真实验结果表明,该算法对机动目标的跟踪性能优于常规的IMM及IMM-CKF算法。 相似文献
9.
基于强跟踪滤波器的自适应常加速模型及跟踪算法 总被引:2,自引:0,他引:2
建立目标机动模型是传感器目标跟踪数据处理中的一个重要环节.为了克服"当前"统计模型对非机动目标和常加速模型对机动目标跟踪性能较差的缺陷,通过对"当前"统计(CS)模型的分析研究,在常加速(CA)模型的基础上提出了一种基于强跟踪滤波器的自适应常加速模型及跟踪算法(ACA-STF).该算法利用速度预测估计与实时速度估计间的偏差进行自适应方差调整,并通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,从而提高了跟踪精度,增强了系统对突发机动的自适应跟踪能力.理论分析和仿真结果表明对于非机动和机动目标,该算法比"当前"统计模型算法具有更高的跟踪精度. 相似文献
10.
针对应用于受不确定性干扰和噪声影响的卫星自主导航系统中的无迹卡尔曼滤波(unscented Kalman filter,UKF)存在估计精度低、跟踪性能差和鲁棒性弱等缺陷,提出一种改进的强跟踪平方根UKF(strong tracking square-root UKF, STSRUKF)导航方法。该方法中利用星敏感器和光学导航相机设计出导航方案,并通过转换方程将间接量测量转换为观测量。针对平方根UKF(square-root UKF, SRUKF)在高阶系统中因为sigma点的零权值系数是负的或者数值计算误差太大时而可能造成滤波器发散问题,采用一种改良的平方根分解方法,改善了滤波器的稳定性。同时,基于强跟踪滤波器理论(strong tracking filters, STF),引入多重自适应衰减因子调节协方差矩阵,使得滤波器具有强跟踪能力和克服系统模型不确定的鲁棒性,改善了滤波器的估计精度。将该方法应用于卫星自主导航系统中,实验仿真结果表明,相对于平方根UKF和STF,该方法不仅保证了系统的可靠性,还提高系统的导航精度和改善系统的鲁棒性及跟踪能力。 相似文献
11.
迭代容积卡尔曼滤波算法及其应用 总被引:4,自引:1,他引:4
将Gauss Newton迭代和容积卡尔曼滤波(cubature Kalman filter, CKF)算法相结合,建立了一种迭代CKF(iterated CKF, ICKF)算法。该算法使用容积数值积分原则直接计算非线性随机函数的均值和方差,且在迭代过程中利用最新量测信息并改进迭代过程产生的新息方差和协方差,可获得较高的估计精度。针对弹道系数未知的再入弹道目标状态估计问题,仿真实验结果显示,该方法实现简单,比无迹卡尔曼滤波方法(unscented Kalman filter, UKF)及CKF方法效果要好。 相似文献
12.
基于卡尔曼滤波的组网雷达系统目标跟踪分析 总被引:8,自引:2,他引:8
提出了一种快速卡尔曼滤波跟踪算法,用于组网雷达系统对机动目标的跟踪分析.该算法只需要组网雷达系统给数据处理中心提供每个接收机所测得的准确径向距离,然后根据推广卡尔曼滤波技术迭代估算出目标的位置.对机动目标的仿真结果表明,该算法不但大大减小了传统跟踪算法的运算复杂度而且具有优良的跟踪性能,尤其适用于近距离高速运动目标的准确跟踪. 相似文献
13.
针对"当前"统计模型算法对目标强机动时跟踪精度下降的问题,提出一种改进算法。该算法在"当前"统计模型的基础上,采用双滤波器并行结构,提取目标的状态信息,使用模糊推理的方法求解调节因子,通过调节因子实时调整滤波器的预测协方差,在保证对目标弱机动跟踪精度的同时,提高了目标发生强机动时的跟踪精度。仿真结果表明目标强机动时,该算法的跟踪精度明显高于"当前"统计模型算法。 相似文献
14.
针对基于"当前"统计模型的算法跟踪突发强机动目标性能下降的问题,提出了一种通过强机动自适应检测调整模型参数的改进算法。该算法利用残差统计距离的概率分布设置目标强机动的检测门限,根据目标的机动水平联合调整模型的机动频率、最大机动加速度以及滤波器增益,在保持"当前"统计模型跟踪算法对一般机动目标跟踪精度的前提下,增强了系统对突发强机动目标的自适应跟踪能力。仿真结果表明,该算法扩大了跟踪机动目标的动态范围,提高了跟踪性能。 相似文献
15.
16.
针对空基无源相干定位系统中外辐射源状态不确定性对机动目标跟踪精度的影响,提出了一种基于多模型预测的双变量容积卡尔曼滤波算法.首先建立了机动目标跟踪的系统模型,并确定了多模型集.然后基于多模型思想,将模型交互步骤增加到状态预测步骤之后,对状态预测值进行交互融合,得到最优的状态预测值.为解决固定的马尔可夫转移概率导致系统跟... 相似文献
17.
基于改进容积卡尔曼滤波的纯方位目标跟踪 总被引:1,自引:0,他引:1
为处理纯方位跟踪的非线性问题,提出了距离参数化均方根容积卡尔曼滤波,在消除距离信息不可测对跟踪影响的同时弱化了计算机有限字长截断效应所引入的误差。在假设目标的初始距离信息用多个参数化模型表示的基础上,对每个模型独立进行均方根容积卡尔曼滤波,并依据贝叶斯准则计算各滤波结果对应的概率,将概率和对应结果的加权融合作为最终滤波结果。实验仿真表明,该滤波虽略微提升了计算复杂度,但获得了更好的滤波精度和鲁棒性。 相似文献
18.
19.