首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了取得精确的图像分类效果,一方面需要提取大量的图像特征数据进行样本分析,另一方面大量的数据又造成了维数灾难.因此,为了解决信息全面与维数灾难的矛盾,引入了深度学习.深度学习利用分层结构处理复杂的高维数据,可以完成复杂函数的逼近,是一类具有多层非线性映射的学习算法,但深度学习模型优化困难且对隐层参数敏感.针对上述问题,将无监督算法引入深度学习,这种学习方法无须人工设计特征提取数据,训练过程中样本标签是未知的.实验表明,该算法在不影响图像分类效果的前提下,可以大大降低计算复杂度,具有一定的时效性.  相似文献   

2.
知识蒸馏能提高神经网络的泛化能力,可解决遥感图像场景分类时标注数据不足的问题。遥感图像存在的类间高相似性会导致中间知识特征丢失,针对该问题,本文提出一种基于自蒸馏级联注意力机制的特征提取方法(SDCASA)。首先构造权值共享的教师、学生网络;然后使用级联注意力模块精细化深层教师网络所提取到的特征,同时保留被浅层神经网络过滤的中间边缘信息;再利用精细化之后的特征指导学生网络学习;最后在下游训练一个线性分类器完成特征分类。在3个公开数据集AID、MLRSNet、EuroSAT上使用20%和50%的样本训练,分类准确率分别达到85.17%、90.10%、 91.13%和85.50%、92.13%、91.17%。此方法能有效提高遥感图像场景分类准确率,性能优于主流自监督图像分类方法 SimSiam、SwAV、MoCov2、Deepcluster,具有良好的应用价值。  相似文献   

3.
高分辨率遥感图像场景分类广泛应用于土地监测、环境保护及城市规划等诸多领域.现有场景分类方法不能很好地结合局部纹理信息和全局语义信息,同时各通道特征之间的关系没有得到有效挖掘.因此,本文提出了一种基于多通道自注意力网络的遥感图像场景分类模型.通过卷积网络提取遥感图像的多尺度特征;随后采用特征融合单元建立多尺度特征间的局部-全局关系,基于多头自注意力机制的Inter-Channel Transformer在通道维度对融合后的特征建模,并推导特征在通道间的关系,进一步扩大全局感受野,以捕捉其语义结构信息,有效提高了网络的分类精度.在数据集AISC和SIRI-WHU上,本文所提算法的整体分类准确率(OA)分别为95.70%和94.00%,超过了当前最新的研究算法,证明了所提模型在高分辨率遥感图像场景分类任务中的有效性.  相似文献   

4.
为了解决场景遥感图像通常分类性能较差、分类精度不高的问题,提出一种基于改进VGG16的场景遥感图像分类方法.针对传统VGG16模型参数量庞大的问题,对通道数以及参数量进行缩减.在算法运行过程中对数据进行正则化处理,并在分类方法中加入注意力机制.通过将注意力机制与CNN模型进行结合,并对两者进行端到端的训练,提高了模型的...  相似文献   

5.
方面级情感分析是自然语言处理领域中一项具有挑战性的细粒度情感分析任务。以微调预训练语言模型的方式广泛应用于方面级情感分析任务,并取得了明显的效果提升。然而,现有多数研究设计的下游结构较为复杂,甚至与预训练模型部分隐藏层结构重合,从而限制了整体模型性能。由于对比学习方法有助于改善预训练语言模型在词语级别和句子级别的表示,本文设计了一种结合自监督对比学习与方面级情感分析的联合微调模型(SSCL-ABSA)。该模型以简洁的下游结构联合两种学习任务,实现从不同角度微调预训练BERT模型,有效促进了方面级情感分析效果的提升。具体地,首先在BERT编码阶段,将评论文本与方面词拼接成两个片段输入BERT编码器,得到各词特征表示。之后根据下游结构需求,对不同的词特征采用池化操作。一方面池化所有词特征用于方面级情感分析,另一方面池化两个片段的方面词特征用于自监督对比学习。最终结合两种任务以联合学习的方式微调BERT编码器。在三个公开数据集上进行实验评估,结果表明SSCL-ABSA方法优于其他同类对比方法。借助t-SNE方法,形象地可视化了SSCL-ABSA有效改善了BERT模型的实体表示效果。  相似文献   

6.
有效利用电子病历中的医疗实体提高病人相似性度量的精准性能够更好地为个性化医疗提供帮助。本文从电子病历中构建病人的多视图进行病人相似性度量研究,以自监督的方式学习病人不同视图间的结构信息及语义信息,并以此建立一个基于自监督对比学习的病人相似性框架SCO4PS。通过视图内和视图间的对比进行跨视图交互,有效学习病人节点的特征表示。采用MIMIC-Ⅲ数据集进行实验,证明了所提出的病人相似性框架的有效性。  相似文献   

7.
网络社交媒体的快速发展提供了便捷的信息获取方式,但也滋生了谣言和虚假新闻,现有的谣言检测模型在有标注数据充足时能有效解决分类问题,然而谣言可用的标注数据有限,各种针对谣言特点精心设计的模型倾向于过拟合,同时,现有模型的鲁棒性不足,谣言传播者恶意破坏谣言传播结构会使模型出现分类错误.针对以上问题,采用自监督的图对比学习方法,对原始谣言传播图进行不同方式的数据增强来模拟对原图的扰动,建立自监督对比学习任务,使图编码器捕获谣言更趋本质的特征,缓解了过拟合,提高了模型的鲁棒性与泛化性能.在来源于主流社交媒体平台的三个公开数据集Twitter15,Twitter16和PHEME上进行了对比实验,实验结果显示,提出的模型的准确率比基准模型分别提高3.4%,1.8%和1.2%,证实了图自监督对比学习方法在谣言检测任务上的有效性.  相似文献   

8.
作为无监督学习的一个分支,自监督学习可以从大量无标签数据中学习到有用的特征,是近期一个热门的研究方向.基于前置任务和对比学习的自监督学习已经得到了大量的研究,但对于卷积操作的选择还没有得到足够的重视.将中心差分卷积神经网络引入自监督学习,探究了卷积操作对自监督学习性能的影响.实验结果显示,加入了中心差分卷积神经网络的Resnet18模型相比普通模型在下游分类任务上的性能提升了4.14%,在几乎未增加计算量的情况下,与Resnet50性能相当.  相似文献   

9.
针对半监督分类模型存在的模型复杂度高、构造正则化项难度大的问题,从丰富样本特征表示的角度出发,构造了自适应图结构的融合网络模型(AGSH)。该模型在卷积神经网络模型(CNN)基础上引入了自适应图卷积神经网络(AGCN)提取CNN模型特征间的关系。对AGSH模型泛化性能的分析证明了该模型在解决半监督相关问题时的有效性。实验结果表明:融合模型在五种图像数据集上的分类精度相比于单一CNN模型分类精度均有提升。研究结论为解决小样本分类问题的建模方法提供了参考。  相似文献   

10.
11.
笔者以2007年11月中巴资源卫星多光谱遥感影像数据为例,选择山东省济宁市市中区作为研究区,利用ERDASImagine9.2遥感影像处理软件对数据进行预处理后,运用最大似然法(Maximum Likelihood)、马氏距离法(Mahalanobis Distance)、最小距离法(Minimum Distance)进行监督分类试验.然后对分类后的结果进行主观和客观的分析,并评价各种分类结果的精度,为用户进行影像分类前选择分类方法提供参考.  相似文献   

12.
线性回归分类是图像识别领域中一种简单而有效的分类方法,目前通常采用最小二乘方法对分类模型进行参数估计。然而,同一场景中不同的遥感图像相对应位置的灰度值不完全相同,而且遥感图像还可能包含椒盐噪声和高斯噪声,这些均会造成遥感图像场景分类精度的降低。为了解决这一问题,笔者提出采用稳健加权总体最小二乘方法对线性回归分类模型的参数进行估计。采用两组高分辨率遥感图像场景数据进行实验,将该方法与最小二乘方法、稳健最小二乘方法和加权总体最小二乘方法进行比较评估。实验结果表明,稳健加权总体最小二乘方法能够同时考虑观测向量和系数矩阵的误差,能够有效减少椒盐噪声和较大高斯噪声的影响,从而获得更高的总体分类精度。  相似文献   

13.
基于人工神经网络的遥感图像分类研究   总被引:1,自引:0,他引:1  
随着人工神经网络系统理论的发展,神经网络技术日益成为遥感图像分类处理的有效手段,并有逐步取代最大似然法的趋势.本文重点讨论了遥感图像分类处理研究中应用效果显著的BP神经网络方法,并在MATLAB平台下对基于BP神经网络的分类算法进行了研究,最后将它的分类结果与最大似然法的分类结果进行了精度比较分析.结果表明基于BP神经网络的遥感图像分类效果是较好的,是一种有效的图像分类方法.  相似文献   

14.
遥感图像分类方法的研究   总被引:19,自引:0,他引:19  
本文较全面地讨论了遥感图像监督分类和非监督分类中的各种分类方法,及该方法的优缺点、适用场合,并作了简单评价,以期对遥感图像分类方法的研究有新的突破.  相似文献   

15.
 基于光学遥感图像提取船只目标是海洋信息感知中的重要应用方向,主要任务包括在广域大视场图像中快速检测定位船只目标,并在检测船只目标的基础上对目标信息进行进一步的提取与分类,该研究无论在民用及军事方面都具有重要意义。本文围绕船只检测识别方法中预处理及目标检测、分类等主要环节,阐述了各环节面临的难点问题及主要解决方法,指出了目前存在的问题,展望了基于光学遥感图像技术的发展趋势。  相似文献   

16.
随着人工神经网络系统理论的发展,神经网络技术日益成为遥感图像分类处理的有效手段,并有逐步取代最大似然法的趋势。本文重点讨论了遥感图像分类处理研究中应用效果显著的BP神经网络方法,并在MATLAB平台下对基于BP神经网络的分类算法进行了研究,最后将它的分类结果与最大似然法的分类结果进行了精度比较分析。结果表明基于BP神经网络的遥感图像分类效果是较好的,是一种有效的图像分类方法。  相似文献   

17.
一种基于KNN的半监督分类改进算法   总被引:1,自引:0,他引:1  
本文提出一种新的基于KNN分类的半监督学习self-training改进算法,并以多个UCI数据集为实验,对基于KNN的半监督分类模型算法进行改进,充分利用已知类别标签数据的正确知识进行自训练,以得到最终分类结果.实验结果表明,该方法能显著提高分类准确率.  相似文献   

18.
介绍了神经网络卫星遥感图像自动识别分类方法,并与最大似然 类结果进行了比较。讨论机实验结果表明,神经网络分类的精度和速度优于最大似然法分类。  相似文献   

19.
针对高分辨遥感图像样本量小,以及传统优化支持向量机(SVM)算法易陷入局部最优解、寻优速度慢等问题,提出一种基于深度迁移学习与狮群优化SVM(LSO-SVM)算法对遥感图像场景进行分类.首先,通过自适应对比度增强图像后利用颜色聚合向量提取图像颜色特征;其次,利用3种预训练网络分别提取图像的迁移学习深度特征;最后,将手工提取的图像特征与用3种预训练网络获取的特征使用系列特征融合方法进行融合,并将其输入LSO-SVM进行图像场景分类.结果表明,该算法解决了小样本情况下深度学习较难训练及传统优化SVM算法易陷入局部最优解、寻优速度慢的问题.在80%的训练条件下,数据集UCM Land-Use和RSSCN7的分类精度分别达到99.52%和98.57%.  相似文献   

20.
基于人工神经网络遥感图像分类的应用研究   总被引:2,自引:0,他引:2  
阐述了遥感图像分类处理中应用BP神经网络的方法,在ENVI平台下,对基于BP神经网络的分类方法进行了研究。结果表明:基于BP网络神经的遥感图像分类效果是相当突出的,是一种非常有效地处理遥感图像的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号