首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The regulation of cell cycle progression in normal mammalian cells is dependent on the presence of growth factors. In their absence, non-transformed cells will stop dividing and enter the quiescent state (G0). We show here that in Chinese hamster ovary cells, at least two serum-dependent points exist during G1 that lead to different cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis. The second point is located late in G1, and probably corresponds with the classic restriction point R. Cells depleted of serum after the first restriction point will not stop randomly in G1 but continue G1 progression until they reach the late restriction point, as marked by translocation of p42MAPkinase (ERK2) to the nucleus.Received 18 September 2003; received after revision 11 December 2003; accepted 19 December 2003  相似文献   

2.
Cyclin-dependent kinase 1 (CDK1) is a major component of the cell cycle progression engine. Recently, several investigations provided evidence demonstrating that unscheduled CDK1 activation may also be involved in apoptosis in cancerous cells. In this article, we demonstrate that X-ray irradiation induced G1 arrest in MOLT-4 lymphocytic leukemia cells, the arrest being accompanied by reduction in the activity of CDK2, but increased CDK1 activity and cell apoptosis in the G1 phase. Interestingly, this increase in CDK1 and apoptosis by ionizing radiation was prevented by pretreatment with the CDK1 inhibitor, roscovitine, suggesting that CDK1 kinase activity is required for radiation-induced apoptotic cell death in this model system. Furthermore, cyclin B1 and CDK1 were detected co-localizing and associating in G1 phase MOLT-4 cells, with the cellular lysates from these cells revealing a genotoxic stress-induced increase in CDK1 phosphorylation (Thr-161) and dephosphorylation (Tyr-15), as analyzed by postsorting immunoprecipitation and immunoblotting. Finally, X-irradiation was found to increase Bcl-2 phosphorylation in G1 phase cells. Taken together, these novel findings suggest that CDK1 is activated by unscheduled accumulation of cyclin B1 in G1 phase cells exposed to X-ray, and that CDK1 activation, at the wrong time and in the wrong phase, may directly or indirectly trigger a Bcl-2-dependent signaling pathway leading to apoptotic cell death in MOLT-4 cells. Received 30 March 2006; received after revision 23 June 2006; accepted 24 August 2006 J. Wu and Y. Feng contributed equally to this work.  相似文献   

3.
Here we examine differentiation of the intestinal cell line Caco-2 following exposure to sodium butyrate (NaBT), using alkaline phosphatase (ALP) activity and carcinoembryonic antigen (CEA) levels as markers of differentiation. We show that acetylcholinesterase (AChE) activity and RNA levels increase during differentiation. Treatment with AChE inhibitors or knockdown of AChE levels by shRNA markedly decrease ALP and CEA levels in a concentration- and time-dependent manner. Finally, our observations suggest that NaBT-induced differentiation of intestinal cells involves AChE-induced cell cycle arrest.  相似文献   

4.
5.
Cell cycle progression is regulated by both intracellular and extracellular control mechanisms. Intracellular controls ensure that cell cycle progression is stopped in response to irregularities such as DNA damage or faulty spindle assembly, whereas extracellular factors may determine cell fate such as differentiation, proliferation or programmed cell death (apoptosis). When extracellular factors bind to receptors at the outside of the cell, signal transduction cascades are activated inside the cell that eventually lead to cellular responses. We have shown previously that MAP kinase (MAPK), one of the proteins involved in several signal transduction processes, is phosphorylated early after mitosis and translocates to the nucleus around the restriction point. The activation of MAPK is independent of cell attachment, but does require the presence of growth factors. Moreover, it appears that in Chinese hamster ovary cells, a transformed cell line, growth factors must be present early in the G1 phase for a nuclear translocation of MAPK and subsequent DNA replication to occur. When growth factors are withdrawn from the medium immediately after mitosis, MAPK is not phosphorylated, cell cycle progression is stopped and cells appear to enter a quiescent state, which may lead to apoptosis. Furthermore, in addition to this growth-factor-regulated decision point in early G1 phase, another growth-factor-sensitive period can be distinguished at the end of the G1 phase. This period is suggested to correlate with the classical restriction point (R) and may be related to cell differentiation.  相似文献   

6.
Human ASIP (hASIP) is expressed as numerous alternative splicing isoforms and there is an atypical protein kinease C (aPKC) phosphorylation site in exon 17b of the encoded sequence. We have identified an important role for exon 17b in cancer cells. Our results showed that hASIP-sa and sb had different effects on cell growth and Fas/FasL-mediated apoptosis in BEL-7404 human hepatoma cells. Human ASIP-sa modified the S phase of the cell cycle and might stimulate cell proliferation. Growth inhibition by hASIP-a antisense oligonucleotide-confirmed the positive action of hASIP-sa. Compared with hASIP-sa, hASIP-sb accelerated Fas/FasL-induced apoptosis, examined by sub-G1 accumulation, chromatin condensation, nuclear fragmentation, PARP cleavage, caspase-8 degradation and mitochondria- regulated cell death. Treatment with aPKC inhibitor could enhance Fas/FasL-mediated apoptosis in hASIP-sa-overexpressing cells, suggesting that hASIP-sa and its interaction with aPKC might contribute to the malignant growth and the blocking of Fas/FasL-mediated apoptosis, while hASIP-sb might function as an antagonist of hASIP-sa.Received 24 March 2005; received after revision 31 May 2005; accepted 21 June 2005  相似文献   

7.
Enhanced cell migration is one of the underlying mechanisms in cancer invasion and metastasis. Therefore, inhibition of cell migration is considered to be an effective strategy for prevention of cancer metastasis. We found that emodin (3-methyl-1,6,8-trihydroxyanthraquinone), an active component from the rhizome of Rheum palmatum, significantly inhibited epidermal growth factor (EGF)- induced migration in various human cancer cell lines. In the search for the underlying molecular mechanisms, we demonstrated that phosphatidylinositol 3-kinase (PI3K) serves as the molecular target for emodin. In addition, emodin markedly suppressed EGF-induced activation of Cdc42 and Rac1 and the corresponding cytoskeleton changes. Moreover, emodin, but not LY294002, was able to block cell migration in cells transfected with constitutively active (CA)-Cdc42 and CA-Rac1 by interference with the formation of Cdc42/Rac1 and the p21-activated kinase complex. Taken together, data from this study suggest that emodin inhibits human cancer cell migration by suppressing the PI3K-Cdc42/Rac1 signaling pathway.Received 7 February 2005; received after revision 11 March 2005; accepted 18 March 2005  相似文献   

8.
A proportion of the population is exposed to acute doses of ionizing radiation through medical treatment or occupational accidents, with little knowledge of the immedate effects. At the cellular level, ionizing radiation leads to the activation of a genetic program which enables the cell to increase its chances of survival and to minimize detrimental manifestations of radiation damage. Cytotoxic stress due to ionizing radiation causes genetic instability, alterations in the cell cycle, apoptosis, or necrosis. Alterations in the G1, S and G2 phases of the cell cycle coincide with improved survival and genome stability. The main cellular factors which are activated by DNA damage and interfere with the cell cycle controls are: p53, delaying the transition through the G1-S boundary; p21WAF1/CIPI, preventing the entrance into S-phase; proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), blocking DNA replication; and the p53 variant protein p53as together with the retinoblastoma protein (Rb), with less defined functions during the G2 phase of the cell cycle. By comparing a variety of radioresistant cell lines derived from radiosensitive ataxia talangiectasia cells with the parental cells, some essential mechanisms that allow cells to gain radioresistance have been identified. The results so far emphasise the importance of an adequate delay in the transition from G2 to M and the inhibition of DNA replication in the regulation of the cell cycle after exposure to ionizing radiation.  相似文献   

9.
The administration of 200 nM K252a to HuH7 suppressed the proliferation of the cells almost completely. The uptake of [3H]thymidine was inhibited, and flow cytometry revealed only one peak at 2C on day 3 after treatment with 100 nM K252a. The expression of proto-oncogene c-myc was not reduced. Despite the blockage at G1, both the size of the cells and the amount of cell protein had increased by 4 times by day 3 after treatment with K252a, while the cells secreted albumin and -fetoprotein into the medium as usual. These results show that K252a can increase the cell size of HuH7 without losing its function by blocking the cell cycle at G1 phase.  相似文献   

10.
We were the first to identify cyclin A1 as a p53-induced gene by cDNA expression profiling of p53-sensitive and -resistant tumor cells [Maxwell S. A. and Davis G. E. (2000) Proc. Natl. Acad. Sci. USA 97, 13009–13014]. We show here that cyclin A1 can induce G2 cell cycle arrest, polyploidy, apoptosis, and mitotic catastrophe in H1299 non-small cell lung, TOV-21G ovarian, or 786-0 renal carcinoma cells. More cdk1 protein and kinase activities were observed in cyclin A1-induced cells than in GFP control-induced cells. Thus, cyclin A1 might mediate apoptosis and mitotic catastrophe through an unscheduled or inappropriate activation of cdk1. Two primary renal cell carcinomas expressing mutated p53 exhibited reduced or absent expression of cyclin A1 relative to the corresponding normal tissue. Moreover, renal carcinoma-derived mutant p53s were deficient in inducing cyclin A1 expression in p53-null cells. Cyclin A1 but not cyclin A2 was upregulated in etoposide-treated tumor cells undergoing p53-dependent apoptosis and mitotic catastrophe. Forced upregulation of cyclin A2 did not induce apoptosis. The data implicate cyclin A1 as a downstream player in p53-dependent apoptosis and G2 arrest. Received 1 November 2005; received after revision 17 February 2006; accepted 13 April 2006  相似文献   

11.
The protein kinase D (PKD) family of proteins are important regulators of tumor growth, development, and progression. CRT0066101, an inhibitor of PKD, has antitumor activity in multiple types of carcinomas. However, the effect and mechanism of CRT0066101 in bladder cancer are not understood. In the present study, we show that CRT0066101 suppressed the proliferation and migration of four bladder cancer cell lines in vitro. We also demonstrate that CRT0066101 blocked tumor growth in a mouse flank xenograft model of bladder cancer. To further assess the role of PKD in bladder carcinoma, we examined the three PKD isoforms and found that PKD2 was highly expressed in eight bladder cancer cell lines and in urothelial carcinoma tissues from the TCGA database, and that short hairpin RNA (shRNA)-mediated knockdown of PKD2 dramatically reduced bladder cancer growth and invasion in vitro and in vivo, suggesting that the effect of the compound in bladder cancer is mediated through inhibition of PKD2. This notion was corroborated by demonstrating that the levels of phospho-PKD2 were markedly decreased in CRT0066101-treated bladder tumor explants. Furthermore, our cell cycle analysis by flow cytometry revealed that CRT0066101 treatment or PKD2 silencing arrested bladder cancer cells at the G2/M phase, the arrest being accompanied by decreases in the levels of cyclin B1, CDK1 and phospho-CDK1 (Thr161) and increases in the levels of p27Kip1 and phospho-CDK1 (Thr14/Tyr15). Moreover, CRT0066101 downregulated the expression of Cdc25C, which dephosphorylates/activates CDK1, but enhanced the activity of the checkpoint kinase Chk1, which inhibits CDK1 by phosphorylating/inactivating Cdc25C. Finally, CRT0066101 was found to elevate the levels of Myt1, Wee1, phospho-Cdc25C (Ser216), Gadd45α, and 14-3-3 proteins, all of which reduce the CDK1-cyclin B1 complex activity. These novel findings suggest that CRT0066101 suppresses bladder cancer growth by inhibiting PKD2 through induction of G2/M cell cycle arrest, leading to the blockade of cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号