首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C E Alfa  B Ducommun  D Beach  J S Hyams 《Nature》1990,347(6294):680-682
Cyclins, as subunits of the protein kinase encoded by the cdc2 gene are major controlling elements of the eukaryotic cell cycle. The fission yeast Schizosaccharomyces pombe has a B-type cyclin, which is a nuclear protein encoded by the cdc13 gene. Here we demonstrate the presence of two spatially distinct cdc13 cyclin populations in the nucleus of S. pombe, one of which is associated with the mitotic spindle poles. Both populations colocalize with the product of the cdc2 gene (p34cdc2). Treatment of cells with the antimicrotubule drug thiabendazole prevents cyclin degradation and blocks the tyrosine dephosphorylation and activation of cdc2. These results suggest a key regulatory role of the cdc2-cyclin complex in the initiation of mitotic spindle formation and also that mitotic microtubule function is required for cdc2 activation.  相似文献   

2.
A Amon  U Surana  I Muroff  K Nasmyth 《Nature》1992,355(6358):368-371
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.  相似文献   

3.
P K Sorger  A W Murray 《Nature》1992,355(6358):365-368
In somatic cells, entry into mitosis depends on the completion of DNA synthesis. This dependency is established by S-phase feedback controls that arrest cell division when damaged or unreplicated DNA is present. In the fission yeast Schizosaccharomyces pombe, mutations that interfere with the phosphorylation of tyrosine 15 (Y15) of p34cdc2, the protein kinase subunit of maturation promoting factor, accelerate the entry into mitosis and abolish the ability of unreplicated DNA to arrest cells in G2. Because the tyrosine phosphorylation of p34cdc2 is conserved in S. pombe, Xenopus, chicken and human cells, the regulation of p34cdc2-Y15 phosphorylation could be a universal mechanism mediating the S-phase feedback control and regulating the initiation of mitosis. We have investigated these phenomena in the budding yeast Saccharomyces cerevisiae. We report here that the CDC28 gene product (the S. cerevisiae homologue of cdc2) is phosphorylated on the equivalent tyrosine (Y19) during S phase but that mutations that prevent tyrosine phosphorylation do not lead to premature mitosis and do not abolish feedback controls. We have therefore demonstrated a mechanism that does not involve tyrosine phosphorylation of p34 by which cells arrest their division in response to the presence of unreplicated or damaged DNA. We speculate that this mechanism may not involve the inactivation of p34 catalytic activity.  相似文献   

4.
Oocytes arrested in the G2 phase of the cell cycle contain a p34cdc2/cyclin B complex which is kept in an inactive form by phosphorylation of its p34cdc2 subunit on tyrosine, threonine and perhaps serine residues. The phosphatase(s) involved in p34cdc2 dephosphorylation is unknown, but the product of the fission yeast cdc25+ gene, and its homologues in budding yeast and Drosophila are probably positive regulators of the transition from G2 to M phase. We have purified the inactive p34cdc2/cyclin B complex from G2-arrested starfish oocytes. Addition of the purified bacterially expressed product of the human homologue of the fission yeast cdc25+ gene (p54CDC25H) triggers p34cdc2 dephosphorylation and activates H1 histone kinase activity in this preparation. We propose that the cdc25+ gene product directly activates the p34cdc2-cyclin B complex.  相似文献   

5.
J Gautier  T Matsukawa  P Nurse  J Maller 《Nature》1989,339(6226):626-629
Genetic studies in the fission yeast Schizosaccharomyces pombe have established that a critical element required for the G2----M-phase transition in the cell cycle is encoded by the cdc2+ gene. The product of this gene is a serine/threonine protein kinase, designated p34cdc, that is highly conserved functionally from yeast to man2 and has a relative molecular mass of 34,000 (34 K). Purified maturation-promoting factor (MPF) is a complex of p34cdc2 and a 45K substrate that appears in late G2 phase and is sufficient to drive cells into mitosis. This factor has been identified in all eukaryotic cells, and in vitro histone H1 is the preferred substrate for phosphorylation. The increase in the activity of H1 kinase in M-phase is associated with a large increase in total cell protein phosphorylation which is believed to be a consequence of MPF activation. We show here that the H1 kinase activity of p34cdc2 oscillates during the cell cycle in Xenopus, and maximal activity correlates with the dephosphorylated state of p34cdc2. Direct inactivation of MPF in vitro is accompanied by phosphorylation of p34cdc2 and reduction of its protein kinase activity.  相似文献   

6.
7.
J Pines  T Hunter 《Nature》1990,346(6286):760-763
  相似文献   

8.
9.
10.
M A Félix  J C Labbé  M Dorée  T Hunt  E Karsenti 《Nature》1990,346(6282):379-382
The cell cycles of early Xenopus embryos consist of a rapid succession of alternating S and M phases. These cycles are controlled by the activity of a protein kinase complex (cdc2 kinase) which contains two subunits. One subunit is encoded by the frog homologue of the fission yeast cdc2+ gene, p34cdc2 and the other is a cyclin. The concentration of cyclins follows a sawtooth oscillation because they accumulate in interphase and are destroyed abruptly during mitosis. The association of cyclin and p34cdc2 is not sufficient for activation of cdc2 kinase, however; dephosphorylation of key tyrosine and threonine residues of p34cdc2 is necessary to turn on its kinase activity. The activity of cdc2 kinase is thus regulated by a combination of translational and post-translational mechanisms. The loss of cdc2 kinase activity at the end of mitosis depends on the destruction of the cyclin subunits. It has been suggested that this destruction is induced by cdc2 kinase itself, thereby providing a negative feedback loop to terminate mitosis. Here we report direct experimental evidence for this idea by showing that cyclin proteolysis can be triggered by adding cdc2 kinase to a cell-free extract of interphase Xenopus eggs.  相似文献   

11.
S Moreno  P Nurse  P Russell 《Nature》1990,344(6266):549-552
The coordination of somatic cell division with cell size must be accomplished by the accumulation of mitotic inducers or the dilution, in the course of cell growth, of mitotic inhibitors. In fission yeast (Schizosaccharomyces pombe), cell size at mitosis is determined by expression of the cdc25+ and nim1+ inducer genes and of the inhibitor gene wee1+, which between them regulate the M-phase protein kinase p34cdc2. We now report that both the phosphoprotein product of cdc25+ (p80cdc25, with apparent relative molecular mass 80,000) and the corresponding messenger RNA increase in concentration as cells proceed through interphase, peaking at mitosis. We propose that the cell-cycle timing of mitosis in somatic cells is regulated by the cyclic accumulation of the cdc25 mitotic inducer, which on reaching a critical level results in activation of p34cdc2 protein kinase. Accumulation of this inducer could play a part in coordinating cell division with growth.  相似文献   

12.
13.
A novel cyclin encoded by a bcl1-linked candidate oncogene   总被引:145,自引:0,他引:145  
We have previously identified a candidate oncogene (PRAD1 or D11S287E) on chromosome 11q13 which is clonally rearranged with the parathyroid hormone locus in a subset of benign parathyroid tumours. We now report that a cloned human placental PRAD1 complementary DNA encodes a protein of 295 amino acids with sequence similarities to the cyclins. Cyclins can form a complex with and activate p34cdc2 protein kinase, thereby regulating progress through the cell cycle. PRAD 1 messenger RNA levels vary dramatically across the cell cycle in HeLa cells. Addition of the PRAD1 protein to interphase clam embryo lysates containing inactive p34cdc2 kinase and lacking endogenous cyclins allows it to be isolated using beads bearing p13suc1, a yeast protein that binds cdc2 and related kinases with high affinity and coprecipitates kinase-associated proteins. Addition of PRAD1 also induces phosphorylation of histone H1, a preferred substrate of cdc2. These data suggest that PRAD1 encodes a novel cyclin whose overexpression may play an important part in the development of various tumours with abnormalities in 11q13.  相似文献   

14.
Wee1(+)-like gene in human cells.   总被引:34,自引:0,他引:34  
M Igarashi  A Nagata  S Jinno  K Suto  H Okayama 《Nature》1991,353(6339):80-83
The wee1+ gene is a mitotic inhibitor controlling the G2 to M transition of the fission yeast Schizosaccharomyces pombe and encodes a protein kinase with both serine- and tyrosine-phosphorylating activities. We have cloned a human gene (WEE1Hu) similar to wee1+ by transcomplementation of a yeast mutant. WEE1Hu encodes a protein homologous to the S. pombe wee1+ and mik1+ (a functionally redundant sibling of wee1+) kinases and effectively rescues a wee1 mutation. We report here that overexpression of WEE1Hu in fission yeast generates very elongated cells as a result of inhibition of the G2-M transition in the cell cycle. In addition, we detected a 3-kilobase-long WEE1Hu messenger RNA in all the human cell lines we examined. We conclude that a wee1(+)-like gene exists and is expressed in human cells.  相似文献   

15.
16.
Universal control mechanism regulating onset of M-phase   总被引:393,自引:0,他引:393  
P Nurse 《Nature》1990,344(6266):503-508
The onset of M-phase is regulated by a mechanism common to all eukaryotic cells. Entry into M-phase is determined by activation of the p34cdc2 protein kinase which requires p34cdc2 dephosphorylation and association with cyclin.  相似文献   

17.
18.
Beach D  Nurse P 《Nature》1981,290(5802):140-142
The fission yeast, Schizosaccharomyces pombe, has been used extensively for genetic studies but until now it has not been utilized as a host organism for DNA cloning. Here we describe a method for high-frequency transformation fo a leu 1(-) strain of this yeast with hybrid plasmids containing the Saccharomyces cerevisiae LEu 2(+) gene, a bacterial plasmid and either the S. cerevisiae 2 μm plasmid or autonomously replicating sequences (ars)(1) derived from S. pombe DNA. Some of the plasmids contain unique restriction sites which make them suitable for the isolation of S. pombe genes, and they can also be used for the exchange of DNA between S. pombe and S. cerevisiae.  相似文献   

19.
S B Haase  S I Reed 《Nature》1999,401(6751):394-397
In yeast and somatic cells, mechanisms ensure cell-cycle events are initiated only when preceding events have been completed. In contrast, interruption of specific cell-cycle processes in early embryonic cells of many organisms does not affect the timing of subsequent events, indicating that cell-cycle events are triggered by a free-running cell-cycle oscillator. Here we present evidence for an independent cell-cycle oscillator in the budding yeast Saccharomyces cerevisiae. We observed periodic activation of events normally restricted to the G1 phase of the cell cycle, in cells lacking mitotic cyclin-dependent kinase activities that are essential for cell-cycle progression. As in embryonic cells, G1 events cycled on schedule, in the absence of S phase or mitosis, with a period similar to the cell-cycle time of wild-type cells. Oscillations of similar periodicity were observed in cells responding to mating pheromone in the absence of G1 cyclin (Cln)- and mitotic cyclin (Clb)-associated kinase activity, indicating that the oscillator may function independently of cyclin-dependent kinase dynamics. We also show that Clb-associated kinase activity is essential for ensuring dependencies by preventing the initiation of new G1 events when cell-cycle progression is delayed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号