首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对检测模型参数量大,难以在嵌入式设备上部署等问题,设计了一种改进的YOLOv4目标检测算法.该算法使用轻量化的MobileNetV1替换CSPDarketnet53主干特征提取网络,并将后续网络中的3×3卷积替换为深度可分离卷积,极大地减少了模型的参数量;在检测头加入NAM注意力模块,增强网络对细节信息的提取能力;采用SDIoU Loss作为边框回归损失,在加快收敛速度的同时提高了检测精度.实验表明:与YOLOv4-CSPDarknet53相比,改进算法在PASCAL VOC07+12数据集上训练出来的模型大小为47.19 M,约为原来的五分之一,FPS提升了40(f/s),mAP提升了2.4%.与YOLOv4-Tiny、YOLOv5s、YOLOv7等目标检测算法相比,具有兼顾检测速度与精度的特点.  相似文献   

2.
针对公路上高速行驶的车辆检测常常存在错检、漏检的问题,对YOLOv4算法进行改进优化.首先,将CSPDarknet53-tiny作为主干特征提取网络,并对网络中的ResBolck_body模块中的残差边与GhostModule模块结合代替原始特征网络CSPDarknet53,从而简化网络结构,同时提高其检测精度;然后,将原算法中的SPPNet模块结构替换为ASPPNet,增大网络感受野,降低参数计算量,使模型能够在保持精准度的同时更加轻量化;最后,将注意力机制模块SENet结构嵌入特征金字塔PANet的两个不同位置,使其可对不同重要程度的特征进行相应处理.在BDD100K数据集实验中,原YOLOv4算法训练后得到的模型的平均精度(AP)为88.27%,改进优化后的YOLOv4模型AP为90.96%,改进后的YOLOv4算法相比原算法AP提高了2.69%.在实际真实场景数据集实验中,改进优化后的YOLOv4算法比原算法AP提高了3.31%.实验结果表明,本文提出的方法可以有效提高YOLOv4算法对车辆目标检测的精度.  相似文献   

3.
针对无人机平台由于内存、算力有限而导致检测模型部署困难、检测速度降低的问题,提出了一种基于YOLOv4的改进模型.首先,为了减小模型内存占用、节省计算资源,根据目标尺寸特点,对YOLOv4原模型的预测层进行了改进,将三尺度检测模型改进为双尺度检测模型;其次,对双尺度检测模型进行正常训练,然后将其BN层的缩放因子进行稀疏...  相似文献   

4.
实时的交通场景目标检测是实现电子监控、自动驾驶等功能的先决条件.针对现有的目标检测算法检测效率不高,以及大多数轻量化目标检测算法模型精度较低,容易误检、漏检目标的问题,本文通过改进YOLOv5目标检测算法来进行模型训练,再使用伪标签策略对训练过程进行优化,然后在KITTI交通目标数据集上将标签合并为3类,对训练出的模型进行测试.实验结果表明,改进的YOLOv5最终模型在该所有类别上的mAP达到了92.5%,对比原YOLOv5训练的模型提高了3%.最后将训练的模型部署到Jetson Nano嵌入式平台上进行推理测试,并通过TensorRT加速推理,测得平均每帧图像的推理时间为77ms,可以实现实时检测的目标.  相似文献   

5.
针对铝型材表面缺陷不同类别尺寸差别较大,导致检测效果较差的情况,本文提出一种基于改进YOLOv5的铝型材表面缺陷检测算法。首先,在网络中嵌入CA(coordinate attention)注意力机制模块,使网络更好地抑制图像中无效样本的干扰,更多聚焦于有用信息;其次,在原有检测层上增加一个小目标检测层,获取和传递更为丰富且更具判别性的小目标特征,以解决对小目标缺陷检测精度低的问题,提高整体检测精度;最后,引入SIoU损失函数,用边界框回归之间的向量角度来重新定义损失函数,在有效减少总自由度损失的同时提高推理精度。将改进算法应用到天池铝型材数据集中进行验证,实验结果表明:该模型能有效识别铝型材表面不同种类的缺陷,较原YOLOv5算法mAP提高11.4个百分点,检测速度达到66.4 frame/s,能够满足目前铝型材工厂生产现场缺陷检测要求。  相似文献   

6.
为提高自动驾驶中的道路目标检测精度,设计了一种基于YOLOv5的道路目标检测模型。该模型在YOLOv5s的网络模型基础上,将原始的初始锚框聚类算法改为K-means++算法来减小随机带来的聚类误差;并在Backbone中SPP模块之前引入SENet注意力机制,以增强道路目标重要特征并抑制一般特征,达到提高检测网络对道路目标的检测能力。在VOC2012改进数据集上训练、测试,基于改进的YOLOv5s的模型比原始YOLOv5s模型平均准确精度提高了2.4%。实验结果表明,改进的YOLOv5s模型能较好地满足道路目标检测的精度要求。  相似文献   

7.
针对目标检测YOLOv4算法在肺结节检测中存在的小目标漏检和肺结节位置失真等问题,设计了一种改进的YOLOv4肺结节检测算法.在原始YOLOv4网络的基础上,将特征融合网络的上采样过程替换为双线性插值法,并采用张量堆叠的方法使顶层的语义信息与底层的位置信息形成更高通道的特征张量.实验结果表明,与原始的YOLOv4算法相比,改进的YOLOv4算法在公开数据集LUAN16上的平均精确度与预测速度分别提高了4.54%和28.1%,可视化结节位置表达更精准.  相似文献   

8.
针对在自然交通场景中道路不同种类目标的边界框大小差异巨大,现有实时算法YOLOv3无法很好地平衡大、小目标的检测精度等问题,重新设计了YOLOv3目标检测算法的特征融合模块,进行多尺度特征拼接,对检测模块进行改进设计,新增2个面向小目标的特征输出模块,得到一种新的具有5个检测尺度的道路目标多尺度检测方法YOLOv3_5d.结果表明:改进后的YOLOv3_5 d算法在通用自动驾驶数据集BDD100 K上的检测平均精度为0.5809,相较于原始YOLOv3的检测平均精度提高了0.0820,检测速度为45.4帧·s-1,满足实时性要求.  相似文献   

9.
10.
为解决车辆识别中由于拍摄角度和距离的不同,导致成像后的车辆尺寸较小和车辆存在不同程度的遮挡,从而产生车辆的错检和漏检等问题,在单阶段目标检测网络YOLOv4(You Only Look Once version 4)算法的基础上,提出了基于注意力机制的递归YOLOv4目标检测算法,即RC-YOLOv4(Recursive and CBAM You Only Look Once version 4)算法。为提高算法对成像后小尺寸车辆的检测能力,在YOLOv4算法加入CBAM(Convolutional Block Attention Module)模块,该模块结合了通道和空间注意力机制,能帮助网络模型更加关注检测图像中的重点信息和小目标信息。针对车辆部分遮挡的检测问题,采用递归特征金字塔(RFP:Recursive Feature Pyramid)结构加强模型对深层特征信息提取能力,RFP结构类似于选择性增强或抑制神经元激活的人类视觉感知,将主干网络提取到的特征递归融合,然后反馈给主干网络,多次特征融合增强网络对上下文语义信息的提取整合能力。提高了对遮挡车辆的检测精度。实验结果表明,在自...  相似文献   

11.
针对安全帽佩戴检测时易受复杂背景干扰,解决YOLOv4网络检测速度慢、内存消耗大、计算复杂度高、对硬件性能要求较高等问题,引入改进YOLOv4算法优化安全帽佩戴检测方法。引入MobileNet网络轻量化YOLOv4、跨越模块特征融合,实现高层语义特征和低层语义特征有效融合。针对图像中小目标分辨率低,信息特征少,多尺度并存,导致在连续卷积过程中易丢失特征信息等问题,采用改进特征金字塔FPN和注意力机制等颈部优化策略聚焦目标信息,弱化安全帽检测时背景信息的干扰。仿真结果表明,基于改进的YOLOv4颈部优化网络安全帽佩戴检测算法在CPU平台下的检测速度为34.28 FPS,是基础YOLOv4网络的16倍,检测精度提升了4.21%,检测速度与检测精度达到平衡。  相似文献   

12.
现如今,基于YOLOv5的网络模型被广泛应用在行人检测的任务中,在精度和速度上有着良好的效果。但在终端设备上部署使用,往往受到算力的限制。因而,基于RepVGG模型改进的主干网络,并且为了提高在密集人群和复杂环境下的适应性,加入了坐标注意力机制,扩大感受野的同时增强感兴趣区域的权重。经过实验测试,这种轻量化的网络参数量和计算量比较小,而且检测精度和鲁棒性也比较高,能够在一定程度下满足工程应用的要求。  相似文献   

13.
针对传统YOLOv3算法中存在检测框定位不精确的问题,提出了一种改进的YOLOv3算法用来重新估计检测框位置,提高智能汽车在雾霾交通环境下的定位精度。首先运用图像去雾算法对采集到的图片进行预处理,然后构造定位置信度替代分类置信度作为参考项来选择估计检测框位置,并改进非极大值抑制(NMS)算法,引入软化非极大值抑制(soft-NMS),最后使用加权平均的方式来更新坐标位置,以达到提高定位精度的目的。实验结果表明,先经过单尺度retinex去雾算法处理图片,再通过改进的YOLOv3算法进行车辆检测,与使用原始的YOLOv3算法进行检测相比平均精度均值mAP(mean average precision)提高了0.44%,在满足检测实时性的同时,能够检测到更多的目标,对检测车辆的定位也更加精确。  相似文献   

14.
扣件的健康状态是保障轨道车辆正常运行的关键。当前人工检测轨道扣件效率较低,具有缺陷性。针对这一问题,提出了基于改进YOLOv4算法的轨道扣件与检测。在YOLOv4网络中,利用CSPDarknet53第二个残差块嵌入conv卷积结构与YOLO头部结构,增加输出端,并进行网络中的上采样与下采样。与YOLOv4原算法模型相比,提升了准确率与检出率。将使用改进YOLOv4的方法,实现对有砟轨道与无砟轨道上扣件的状态检测。试验结果表明:基于改进YOLOv4算法检出率和准确率比原YOLOv4算法分别提升4.65%和4.88%,并且YOLOv4模型体积与其他模型相比更小,适用于轨道扣件检测。  相似文献   

15.
道路裂缝和坑洞的检测是道路安全检查中的重要部分。针对道路实时检测中存在的漏检、错检等问题,本文提出一种基于改进YOLOv7的道路裂缝和坑洞检测算法。先将裂缝分为纵向、横向和网状裂缝,再使用可变形卷积(Deformable Convolutional Networks, DCN)替换原YOLOv7中特征提取网络里的卷积,使得形状差异较大且不规则的裂缝形状特征得到完整提取,提升裂缝的准确度;针对获取的图像中坑洞目标较小不易发现问题,通过先将边界框建模为高斯分布,再使用基于Wasserstein距离(Normalized Wasserstein Distance, NWD)的新的度量标准的小目标检测评估方法,提高坑洞的检测精度。实验结果表明,改进后的算法较原YOLOv7算法检测精度提高了4.1%,同时检测速度提高了17%,表现出更出色的检测效果。  相似文献   

16.
针对O型密封圈缺陷难以人工识别的问题,提出一种基于改进YOLOv5的表面缺陷自动检测方法。在数据预处理阶段,采用半自动标注方法减少人工标注成本,同时将拼接图片改为9张以实现Mosaic数据增强方法。在网络预测层引入标签平滑方法以减少模型过度依赖标签。在骨干网络中添加卷积注意力机制模块,强化有效信息,使骨干网络提取更加细致的局部特征信息。同时,针对缺陷类型尺度变化大的特点,引入剪枝的双向特征金字塔网络,以解决大小缺陷在特征提取过程中的丢失问题。实验结果表明,基于改进的YOLOv5与原YOLOv5相比,O型圈表面缺陷检测平均精度均值提高了4.26%,并且检测速度在25 ms之内,能够满足实际生产需要。  相似文献   

17.
针对密集场景下行人检测的目标重叠和尺寸偏小等问题,提出了基于改进YOLOv5的拥挤行人检测算法。在主干网络中嵌入坐标注意力机制,提高模型对目标的精准定位能力;在原算法三尺度检测的基础上增加浅层检测尺度,增强小尺寸目标的检测效果;将部分普通卷积替换为深度可分离卷积,在不影响模型精度的前提下减少模型的计算量和参数量;优化边界框回归损失函数,提升模型精度和加快收敛速度。实验结果表明,与原始的YOLOv5算法相比,改进后YOLOv5算法的平均精度均值提升了7.4个百分点,检测速度达到了56.1帧/s,可以满足密集场景下拥挤行人的实时检测需求。  相似文献   

18.
叶涛  赵宗扬  柴兴华  张俊 《科学技术与工程》2021,21(33):14245-14250
针对“黑飞”无人机侵犯公民隐私、危害个人及公共安全,现有的无人机检测算法难以平衡检测速度和精度且对小目标的检测精度较低等不足,本文在YOLOv3的基础上进行改进,提出MS-Net (Multi-Scale Object Detection Network) 对低空中的无人机进行快速高效地检测,为实现后续的防护压制提供依据。针对锚点框,通过 K-means聚类方法得出更准确预测目标区域的位置。在特征提取部分,使用SSP (Spatial Pyramid Pooling) 提取更丰富的特征信息,提升分类精度。在检测部分,提出ESE (Enhanced Sequeeze and Excitation) 通道注意力机制在基本不影响检测速度的同时实现更加精确的多尺度目标检测。实验结果表明:该方法在由无人机、风筝、鸟等组成的数据集上的检测速度为51FPS,平均准确率(mean average precision, mAP)为91.39%,比 YOLOv3 网络提高了6.42%;特别地,在无人机目标上的平均精度(average precision, AP)提升了7.42%。  相似文献   

19.
根据以往钢铁表面缺陷检测技术的检测效能较低、准确性低的情况,提出一种改进YOLOv5s的钢材表面缺陷检测算法。主要改进为:加入坐标注意力机制(Coordinate Attention,CA)的空洞空间卷积池化金字塔 (Atrous Spatial Pyramid Pooling,ASPP),扩大模型感受野和多尺度感知能力的同时能更好的获取特征位置信息;加入改进的选择性内核注意力机制(Selective Kernel Attention,SK),使模型能更好的利用特征图中的频率信息,提升模型的表达能力;将损失函数替换为SIoU,提升模型性能的同时加快模型的收敛。实验数据表明,改进的YOLOv5s网络模型在NEU-DET数据集上的mAP值为78.13%,相比原网络模型提高了2.85%。改进的模型具有良好的检测型性能的同时检测速度为103.9 FPS,能够满足实际应用场景中钢材表面缺陷实时检测的需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号