首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
为了解处理生活污水的强化生物除磷(EBPR)系统的除磷和脱氮特性,采用SBR接种普通活性污泥,通过逐步提高进水COD浓度的方式,结合短污泥龄控制,实现了EBPR系统的快速启动,并对启动后系统的脱氮除磷特性进行了研究.试验结果表明:当进水COD浓度由200 mg/L左右逐步提高至500 mg/L左右时,29 d可实现EBPR系统的启动,此后30 d内出水磷浓度稳定维持在0.5 mg/L以下,磷去除率平均达99.4%.该系统还可长期高效稳定地用于高磷污水(含磷40mg/L)的处理.成功启动后的EBPR系统内聚磷菌(PAOs)为优势菌,占全菌总数的34%±3%,但也存在硝化反硝化菌和聚糖菌.在EBPR系统稳定运行时的好氧段,PAOs吸磷的同时伴随着脱氮菌群的同步硝化反硝化(SND)作用,使得平均总无机氮(TIN)损失达7.6 mg/L,系统总氮(TN)去除率在70%左右.EBPR系统内除磷耦合同步硝化反硝化,可实现污水的脱氮除磷.  相似文献   

2.
DO对膜生物反应器中同步硝化反硝化的影响   总被引:1,自引:0,他引:1  
采用人工配制的生活污水作为原水,考察了在膜生物反应器(MBR)中不同溶解氧(DO)对于同步硝化反硝化效果的影响.结果表明,将试验条件控制在TN容积负荷为0.35 kgN/(m3*d)、HRT为6 h、SRT为30 d、pH为7~8、温度为25~28 ℃、C/N为9时:在反应器DO的质量浓度为0.6 mg/L条件下,可获得62.5%的NH+4 -N去除率、91.1%的反硝化率和58.3%的SND率;在反应器DO的质量浓度为1.0 mg/L条件下,可获得90.8%的NH+4-N去除率、90.4%的反硝化率和82.5%的SND率;在反应器DO的质量浓度为1.4 mg/L时,可获得93.3%的NH+4-N去除率、77.0%的反硝化率和72.1%的SND率.  相似文献   

3.
膜生物反应器净化污水的硝化反硝化性能   总被引:2,自引:0,他引:2  
比较了膜生物反应器(MBR)和传统活性污泥工艺(CAS)在相同运行条件下处理生活污水的硝化和反硝化性能.结果表明,MBR对NH4 -N和TN的去除率分别比CAS高54.8%和37.3%.2种工艺的亚硝化、反硝化作用均呈零级反应,对应降解速率常数MBR分别约为CAS的2.2倍和2.5倍;CAS中硝化作用为零级反应,而MBR中硝化作用随时间推移趋于平缓.MBR中的细菌总数、硝酸菌、亚硝酸菌和反硝化菌数量分别比CAS工艺中相应菌种高1~2个数量级.通过控制曝气强度或减小回流通道断面限制缺氧区溶解氧质量浓度,可提高MBR中的反硝化效果.  相似文献   

4.
陆艳侠 《科技信息》2013,(7):164-165
研究了采用前置反硝化曝气生物滤池工艺直接对生活污水进行处理,回流比对该工艺处理效果的影响。在一定范围内增大回流比有利于提高系统总脱氮率。根据试验结果,建议回流比选择2:1。在此条件下,COD去除率大于80%;NH4+-N去除率大于97%;总脱氮率大于75%。  相似文献   

5.
以模拟废水为对象,在传统的流化床反应器内,将活性污泥和经驯化的反硝化污泥按适当比例混合后,用聚乙烯醇(PVA)加适当添加剂将其包埋,并对短程硝化反硝化脱氮进行了研究.结果表明,在进水NH4+-N平均为53.60mg/L,COD为281.19mg/L,HRT12h,调控温度、溶解氧、pH等,出水亚硝化率和TN去除率分别可达95%和85%以上,短程硝化反硝化脱氮较理想.当进水COD含量从150mg/L增加到750mg/L,TN去除率从73.66%提高到96.79%.适合包埋颗粒短程硝化反硝化脱氮的最佳溶解氧浓度约为4.0mg/L.当pH一直维持在8.0左右,温度从30℃降到25℃过程中,短程硝化反硝化并未遭破坏.当温度维持在25℃,pH从8.0降到7.5,连续运行约5个周期后,短程硝化反硝转变为全程的硝化反硝化.  相似文献   

6.
本实验针对生物阴极微生物燃料电池(MFC)对模拟焦化废水的处理情况进行研究.通过从焦化厂缺氧池活性污泥中筛选出具有良好反硝化性能的反硝化菌群作为生物阴极,构建MFC处理模拟焦化废水,以电压、功率密度、COD和废水中代表性有机污染物苯酚、吡啶、喹啉与吲哚等为考察指标.结果表明,生物阴极MFC运行稳定,具有良好的产电性能,输出电压可达495mV,功率密度最高达29.23mW·m-2,COD去除率为70%;苯酚、吡啶、喹啉与吲哚等焦化废水中代表性有机污染物均有所去除,苯酚的去除率达到61%,吡啶、喹啉与吲哚等去除率也达到30%左右,反硝化菌生物阴极MFC对模拟焦化废水具有良好的处理效果.  相似文献   

7.
DO对MBBR同步硝化反硝化生物脱氮影响研究   总被引:25,自引:0,他引:25  
研究了移动床生物膜反应器(MBBR)同步硝化反硝化生物脱氮城市污水处理工艺.试验结果表明,当溶解氧(DO)质量浓度为2 mg.L-1、水力停留时间为8 h、悬浮填料填充率为50%时,MBBR工艺可通过同步硝化反硝化实现90%以上的脱氮效果.生物膜内DO质量浓度梯度造成好氧和缺氧区是实现同步硝化和反硝化的关键.该工艺能在同一个反应器中实现同时硝化和反硝化,并达到两个过程的动力学平衡,大大简化了生物法脱氮的工艺流程,提高了生物脱氮的效率,并节省投资.  相似文献   

8.
一株戴尔福特菌的异养硝化与好氧反硝化性能研究   总被引:1,自引:0,他引:1  
通过在好氧反硝化培养基中添加氨氮和在异养硝化培养基中添加硝基氮,研究了从实验室SBR反应器中新分离的一株戴尔福特菌的异养硝化作用与好氧反硝化作用的相互影响.研究表明:加入氨氮后,24 h后的硝基氮去除率最大可提高1.47%,48 h后菌体生长较为旺盛,氨氮去除率则均在90%以上;同时发现加入硝基氮后,菌体生长推迟,但氨氮去除率最大可提高4.16%.异养硝化与好氧反硝化作用之间是相互促进的.此株戴尔福特菌可在同一条件下自身实现同步硝化反硝化,具有一定的工程应用价值.  相似文献   

9.
利用自培养硝化污泥与实验室筛选的1株反硝化细茵共培养形成共生污泥,构建膜生物反应器(MBR)单一反应体系同步硝化反硝化系统,得到系统良好同步硝化反硝化曝气量和污泥浓度的最优条件.由试验结果可知:在混合污泥质量浓度(MLSS)6.0~10.0g/L时,调节曝气量,可以使单污泥同步硝化反硝化总氮(TN)去除率达到85%以上.不同MLSS下,达到最高TN去除率的最佳曝气量随着MLSS增高而向高曝气量偏移.随着MLSS增高,响应因子F变小,由曝气量的变化而引起的TN去除率变化明显变缓,表示MLSS对O2传递的缓冲能力越强.在MLSS为8g/L条件下,低负荷比较容易达到较高的TN去除率,而高负荷下需要更高的曝气量以获得高的TN去除率,系统适合的NH4+-N负荷范围0~0.30 kg/(m3·d).MLSS≥3.0g/L,出水化学需氧量(COD)低于50 mg/L,COD大部分贡献于反硝化所需C源.单一反应体系同步硝化反硝化系统能对负荷的改变作出及时的回应,整体上运行比较稳定.  相似文献   

10.
采用生物陶粒反应器,在氨氮负荷为0.77~1.33 kg.m-3.d-1的条件下,生物陶粒反应器对氨氮的平均去除率可以达到81.32%,亚硝酸氮积累率基本稳定地保持在91%~99%,试验结果证实了在生物陶粒反应器中可实现稳定的亚硝酸型硝化.从生物陶粒反应器中分离出1株新型异养硝化细菌HSY5,经过生理生化鉴定和16SDNA测序,建立了系统发育树,鉴定出这株菌属于假单胞菌属(Pseudochrobactrum).采用乙酸钠-氯化铵培养基培养细菌进行硝化特性研究,经过12 d好氧培养,总氮和氨氮最终去除率分别为63.78%和80.87%,并且具有产生NO2-N的硝化性能.  相似文献   

11.
不同曝气工况对养殖污水处理效果的影响   总被引:1,自引:0,他引:1  
设计了一套优化组合的水处理系统,主要由下行生物膜池、上行生物膜池、下行牡蛎壳滤池和上行牡蛎壳滤池4个单元串联构成,各单元底部均设置了曝气装置.设计了仅其中1个单元或者3个单元曝气的4种工况,来研究不同曝气工况对养殖污水处理效果的影响.结果表明:在系统进水总氨氮质量浓度为0.52~0.72 mg·L-1,亚硝酸盐氮质量浓...  相似文献   

12.
为探讨饮用水生物滤池对NH4+-N去除和"氮亏损"现象的影响因素,测定生物滤池进出水中NH4+-N,NO2--N,NO3--N等指标.结果表明,陶粒生物滤池对NH4+-N的去除率从14.97%到60.99%,活性炭生物滤池对NH4+-N的去除率从16.59%到83.02%;陶粒和活性炭滤池对NH4+-N的去除率都随着流速的增加而降低;陶粒滤池内NH4+-N的去除率随着气水比和C∶N的增加而先增加后下降;NH4+-N的去除率在活性炭滤池内随C∶N的增加而降低,气∶水的增加而增加;气∶水对两种生物滤池中NH4+-N去除的影响最大.陶粒生物滤池氮亏损的量从0.10 mg/L到0.70 mg/L,活性炭生物滤池氮亏损量从0.11 mg/L到1.01 mg/L;氮亏损量随着流速增加而降低,随着气水比增加而增加,随着C∶N的增加而先下降后增加;气水比对陶粒和活性炭生物滤池的氮亏损量影响最大.  相似文献   

13.
采用人工模拟的高氨氮城市污水,对厌氧/好氧/缺氧(A/O/A)序批式活性污泥法反应器内短程同步硝化/反硝化耦合除磷过程的实现及稳定性进行研究.对一个典型周期内水质变化情况进行测定和分析,系统对化学需氧量(COD)、氨氮(NH+4-N)、总氮(TN)、总磷(TP)去除率分别为94.8%,97.6%,89.4%,93.1%.调节曝气量以改变溶解氧质量浓度,结果表明:随着溶解氧质量浓度升高,亚硝化率由97%下降至20%;溶解氧质量浓度过低,会抑制好氧阶段的吸磷过程;溶解氧质量浓度过高,会影响好氧、缺氧阶段磷的有效吸收.  相似文献   

14.
【目的】探究氮肥对毛竹林土壤硝化和反硝化作用的影响,并分析其与主要土壤因子的相关关系,为毛竹林的抚育管理及可持续经营提供理论依据。【方法】以不施氮肥毛竹林为对照,应用气压过程分离(BaPS)方法,分季节测定施氮肥条件下毛竹林土壤总硝化和反硝化速率。【结果】施氮肥条件下毛竹林土壤总硝化和反硝化速率从春季到冬季变化规律相似,均呈现先升高后降低趋势,施肥毛竹林土壤总硝化和反硝化速率均以7月最高,当月相比分别比未施肥毛竹林高27.50%和44.60%; 最低值分别出现在1月和10月,当月相比分别比未施肥毛竹林高45.58%和402.56%。【结论】施氮肥可以促进毛竹林土壤硝化和反硝化作用,提高土壤硝态氮和微生物生物量氮含量,氮肥和季节对总硝化和反硝化速率存在显著交互作用,土壤温度、含水率与土壤总硝化、反硝化速率均呈显著正相关。  相似文献   

15.
将电极生物膜法(BER)与序批式生物膜法(SBBR)结合以实现两种技术的优势互补,通过处理人工模拟废水,探讨了电极-SBBR工艺参数中电流强度(IA)、溶解氧质量浓度(cDO)及进水碳氮比对脱氮去除效果的影响.结果表明,在电化学与生物化学的协同作用下,体系的同步硝化反硝化作用得到了加强,取得了较好的脱氮效果,总氮(TN)的平均去除效率可达72.5%.优化运行参数:当IA为80mA,溶解氧质量浓度为3~5mg/L,碳氮比为6左右时,TN的平均去除率可达80%以上.  相似文献   

16.
在常温、低氨氮浓度下,通过控制DOC质量浓度在0.5~1.2 mg/L,在SBR反应器中成功实现短程硝化与同时硝化反硝化工艺的耦合;亚硝酸累积率达到78.5%,总氮损失率达到28.1%;研究了有机负荷和pH对耦合工艺的影响,结果表明,有机物负荷增加有利于提高耦合工艺总氮的去除率,负荷从0.11上升到0.47时,TN的去除率从18.0%上升至41.9%;本实验条件下耦合工艺最佳pH在7.6左右.  相似文献   

17.
以上向流生物滤柱为反应器,实验室内氧化沟回流污泥为接种污泥,在常温低基质下成功启动了厌氧氨氧化反应器.在此基础上,研究了pH,亚硝酸盐氮与氨氮之比和HRT对厌氧氨氧化反应的影响.结果表明:厌氧氨氧化反应的最适pH值为6.7~8.7;亚硝酸盐氮与氨氮的最适比值为(1.35~1.37)∶1;厌氧氨氧化反应的临界HRT是2h,随着HRT的缩短,总氮的去除率迅速降低.  相似文献   

18.
为了探究海水养殖循环系统不同功能区域微生物群落结构特征,深入了解水质理化因子与微生物群落之间的相关性,通过16S rRNA扩增子高通量测序技术对系统不同功能区域水体微生物群落结构进行了分析。结果表明,变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)为整个系统绝对优势菌门,不同功能区域优势属组成差异较大,但是弧菌(Vibrio)丰度都在1%以上。脉红螺养殖池和生物滤池水体α多样性最高,鲍鱼养殖池水体和自然海水多样性最低。NMDS分析结果显示生物滤池和养殖池进水口微生物群落结构相似,其他区域微生物群落结构有明显差异。生物滤池到养殖池NH4+和NO2-去除率分别为8.77%和45.12%,NO3-质量浓度在整个系统内都处于较高水平(148.50~200.47mg/L)。环境因子与微生物群落结构没有显著相关性,温度T和NO2-对微生物群落结构的影响相对较大。研究结果为下一步循环水养殖系统设计的完善和日常管理提供了参考。  相似文献   

19.
于丰水期(2018年7月)和枯水期(2019年4月)分别在湟水河西宁段典型断面采集水体和沉积物样品共58个,枯水期同时采集污水处理厂出水样6个。利用实时荧光定量PCR方法,对12种氮转化功能基因进行定量分析。结果表明,湟水河平均总氮浓度为3.06±1.23 (1.308~6.51) mg/L。水体和沉积物中相对丰度较高的氮转化功能基因是narG,nirS和nosZ。氮转化功能基因的丰度和组成在沉积物中存在明显的季节差异,在水体中无明显季节差异。关键氮素转化过程是反硝化,对水体和沉积物氮素的去除贡献率分别为88%和98%。水体氮素转化主要受pH值、总氮及NO3--N调控,其中,氨氧化与NO3--N浓度负相关,反硝化与pH负相关。沉积物氮素转化与水体氮素浓度、沉积物pH值、总氮、总磷和有机碳等相关,其中,氨氧化与水体氮素浓度负相关,而反硝化主要受沉积物性质影响。进一步的分析结果表明,污水处理厂排放会显著降低水体中AOA-amoA, CMX-amo A, nir S, nxr B, napA, nar G...  相似文献   

20.
针对新型脱氮工艺短程硝化–厌氧氨氧化(ANAMMOX)过程中亚硝氮难以稳定生成的难题,设计水解酸化+UASB+好氧氧化的处理工艺,应用于实际垃圾渗滤液处理工程.结果表明,当进水氨氮浓度为610~1900 mg/L,C/N比为1.8~3.5时,在进水量为100 m3/d,回流比为2:1,pH值为7.5~8.0,DO为2....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号