首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two centuries after the duck-billed platypus was discovered, monotreme chromosome systems remain deeply puzzling. Karyotypes of males, or of both sexes, were claimed to contain several unpaired chromosomes (including the X chromosome) that form a multi-chromosomal chain at meiosis. Such meiotic chains exist in plants and insects but are rare in vertebrates. How the platypus chromosome system works to determine sex and produce balanced gametes has been controversial for decades. Here we demonstrate that platypus have five male-specific chromosomes (Y chromosomes) and five chromosomes present in one copy in males and two copies in females (X chromosomes). These ten chromosomes form a multivalent chain at male meiosis, adopting an alternating pattern to segregate into XXXXX-bearing and YYYYY-bearing sperm. Which, if any, of these sex chromosomes bears one or more sex-determining genes remains unknown. The largest X chromosome, with homology to the human X chromosome, lies at one end of the chain, and a chromosome with homology to the bird Z chromosome lies near the other end. This suggests an evolutionary link between mammal and bird sex chromosome systems, which were previously thought to have evolved independently.  相似文献   

2.
Genetic evidence equating SRY and the testis-determining factor   总被引:56,自引:0,他引:56  
The testis-determining factor gene (TDF) lies on the Y chromosome and is responsible for initiating male sex determination. SRY is a gene located in the sex-determining region of the human and mouse Y chromosomes and has many of the properties expected for TDF. Sex reversal in XY females results from the failure of the testis determination or differentiation pathways. Some XY females, with gonadal dysgenesis, have lost the sex-determining region from the Y chromosome by terminal exchange between the sex chromosomes or by other deletions. If SRY is TDF, it would be predicted that some sex-reversed XY females, without Y chromosome deletions, will have suffered mutations in SRY. We have tested human XY females and normal XY males for alterations in SRY using the single-strand conformation polymorphism assay and subsequent DNA sequencing. A de novo mutation was found in the SRY gene of one XY female: this mutation was not present in the patient's normal father and brother. A second variant was found in the SRY gene of another XY female, but in this case the normal father shared the same alteration. The variant in the second case may be fortuitously associated with, or predisposing towards sex reversal; the de novo mutation associated with sex reversal provides compelling evidence that SRY is required for male sex determination.  相似文献   

3.
4.
A gene mapping to the sex-determining region of the mouse Y chromosome is deleted in a line of XY female mice mutant for Tdy, and is expressed at a stage during male gonadal development consistent with its having a role in testis determination. This gene is a member of a new family of at least five mouse genes, related by an amino-acid motif showing homology to other known or putative DNA-binding domains.  相似文献   

5.
The Y chromosome, which in man determines the male sex, is composed of two functionally distinct regions. The pseudoautosomal region is shared between the X and Y chromosome and is probably required for the correct segregation of the sex chromosomes during male meiosis. The second region includes the sex-determining gene(s), the presence of which is necessary for the development of testes. The two regions have contrasting genetic properties: the pseudoautosomal region recombines between the X and Y chromosome; the Y-specific region must avoid recombination otherwise the chromosomal basis of sex-determination breaks down. The pseudoautosomal region is bounded at the distal end by the telomere and at the proximal end by X- and Y-specific DNA. We have found that the proximal boundary was formed by the insertion of an Alu sequence on the Y chromosome early in the primate lineage. Proximal to the Alu insertion there is a small region where similarity between the X and Y chromosomes is reduced and which is no longer subject to recombination.  相似文献   

6.
K Kiel-Metzger  R P Erickson 《Nature》1984,310(5978):579-581
Development and fertility in the mouse are known to be influenced by loci mapped to the T/t complex of chromosome 17. Recent evidence suggests that one or more genes near this region may also be associated with sex determination. Washburn and Eicher recently reported partial to complete sex reversal with the Thp deletion on some genetic backgrounds and suggest that this result may be due to a primary sex-determining locus (Tas) that is closely linked to, or a part of, the T locus. Sex-specific, Bkm (banded Krait minor satellite DNA)-related sequences are known to have autosomal as well as heterogametic sex chromosomal copies, but specific regions of autosomal localization have not been described. We now demonstrate the presence of chromosome Y-related DNA sequences on proximal chromosome 17 in Sex-reversed (Sxr) and normal mice using in situ hybridization of mitotic chromosomes with 3H-labelled pCS316 (ref. 4), a probe that shows major hybridization to the proximal portion of the mouse chromosome Y. These data, and those of Washburn and Eicher, argue for a gene(s) related to sex determination or differentiation within the proximal portion of mouse chromosome 17.  相似文献   

7.
8.
The mammalian sex chromosomes are thought to be related to each other by sharing a common origin. That is, the X and Y chromosomes originally evolved from a pair of chromosomes that only differed at the locus determining sexual differentiation. For example, this evolutionary relationship is reflected during meiosis in chromosomal pairing between the tip of the human X chromosome short arm and the Y chromosome which presumably implies sequence homology. However, compelling genetic evidence for functional homology between the mammalian X and Y chromosome is lacking. We describe here the localization of a gene to the tip of the short arm of the human X chromosome and evidence for a related gene on the Y chromosome.  相似文献   

9.
Pen I  Uller T  Feldmeyer B  Harts A  While GM  Wapstra E 《Nature》2010,468(7322):436-438
Sex determination is a fundamental biological process, yet its mechanisms are remarkably diverse. In vertebrates, sex can be determined by inherited genetic factors or by the temperature experienced during embryonic development. However, the evolutionary causes of this diversity remain unknown. Here we show that live-bearing lizards at different climatic extremes of the species' distribution differ in their sex-determining mechanisms, with temperature-dependent sex determination in lowlands and genotypic sex determination in highlands. A theoretical model parameterized with field data accurately predicts this divergence in sex-determining systems and the consequence thereof for variation in cohort sex ratios among years. Furthermore, we show that divergent natural selection on sex determination across altitudes is caused by climatic effects on lizard life history and variation in the magnitude of between-year temperature fluctuations. Our results establish an adaptive explanation for intra-specific divergence in sex-determining systems driven by phenotypic plasticity and ecological selection, thereby providing a unifying framework for integrating the developmental, ecological and evolutionary basis for variation in vertebrate sex determination.  相似文献   

10.
Genetic evidence that ZFY is not the testis-determining factor   总被引:13,自引:0,他引:13  
  相似文献   

11.
A primitive Y chromosome in papaya marks incipient sex chromosome evolution   总被引:2,自引:0,他引:2  
Liu Z  Moore PH  Ma H  Ackerman CM  Ragiba M  Yu Q  Pearl HM  Kim MS  Charlton JW  Stiles JI  Zee FT  Paterson AH  Ming R 《Nature》2004,427(6972):348-352
Many diverse systems for sex determination have evolved in plants and animals. One involves physically distinct (heteromorphic) sex chromosomes (X and Y, or Z and W) that are homozygous in one sex (usually female) and heterozygous in the other (usually male). Sex chromosome evolution is thought to involve suppression of recombination around the sex determination genes, rendering permanently heterozygous a chromosomal region that may then accumulate deleterious recessive mutations by Muller's ratchet, and fix deleterious mutations by hitchhiking as nearby favourable mutations are selected on the Y chromosome. Over time, these processes may cause the Y chromosome to degenerate and to diverge from the X chromosome over much of its length; for example, only 5% of the human Y chromosome still shows X-Y recombination. Here we show that papaya contains a primitive Y chromosome, with a male-specific region that accounts for only about 10% of the chromosome but has undergone severe recombination suppression and DNA sequence degeneration. This finding provides direct evidence for the origin of sex chromosomes from autosomes.  相似文献   

12.
The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.  相似文献   

13.
Transposable elements (TEs)-mediated gene sequence movement is thought to play an important role in genome expansion and origin of genes with novel functions. In this study, a gene, HGGT, involved in vitamin E synthesis was used in a case study to discover and characterize transposons carrying gene fragments in maize. A total of 69 transposons that are distributed across the 10 chromosomes and have an average length of 3689 bp were identified from the maize sequence database by using the BLAST search algori...  相似文献   

14.
P Koopman  J Gubbay  J Collignon  R Lovell-Badge 《Nature》1989,342(6252):940-942
The Y chromosome determines maleness in mammals. A Y chromosome-linked gene diverts the indifferent embryonic gonad from the default ovarian pathway in favour of testis differentiation, initiating male development. Study of this basic developmental switch requires the isolation of the testis-determining gene, termed TDF in humans and Tdy in mice. ZFY, a candidate gene for TDF, potentially encodes a zinc-finger protein, and has two Y-linked homologues, Zfy-1 and Zfy-2, in mice. Although ZFY, Zfy-1 and Zfy-2 seem to map to the sex-determining regions of the human and mouse Y chromosomes, there is no direct evidence that these genes are involved in testis determination. We report here that Zfy-1 but not Zfy-2 is expressed in differentiating embryonic mouse testes. Neither gene, however, is expressed in We/We mutant embryonic testes which lack germ cells. These observations exclude both Zfy-1 and Zfy-2 as candidates for the mouse testis-determining gene.  相似文献   

15.
16.
Although the sex-determining gene Sry has been identified in mammals, no comparable genes have been found in non-mammalian vertebrates. Here, we used recombinant breakpoint analysis to restrict the sex-determining region in medaka fish (Oryzias latipes) to a 530-kilobase (kb) stretch of the Y chromosome. Deletion analysis of the Y chromosome of a congenic XY female further shortened the region to 250 kb. Shotgun sequencing of this region predicted 27 genes. Three of these genes were expressed during sexual differentiation. However, only the DM-related PG17 was Y specific; we thus named it DMY. Two naturally occurring mutations establish DMY's critical role in male development. The first heritable mutant--a single insertion in exon 3 and the subsequent truncation of DMY--resulted in all XY female offspring. Similarly, the second XY mutant female showed reduced DMY expression with a high proportion of XY female offspring. During normal development, DMY is expressed only in somatic cells of XY gonads. These findings strongly suggest that the sex-specific DMY is required for testicular development and is a prime candidate for the medaka sex-determining gene.  相似文献   

17.
18.
The development of a eutherian mammal as a male is a consequence of testis formation in the embryo, which is thought to be initiated by a gene on the Y chromosome. In the absence of this gene, ovaries are formed and female characteristics develop. Sex determination therefore hinges on the action of this testis-determining gene, known as Tdy in mice and TDF in humans. In the past, several genes proposed as candidates for Tdy/TDF have subsequently been dismissed on the grounds of inappropriate location or expression. We have recently described a candidate for Tdy, which maps to the minimum sex-determining region of the mouse Y chromosome. To examine further the involvement of this gene, Sry, in testis development, we have studied its expression in detail. Fetal expression of Sry is limited to the period in which testes begin to form. This expression is confined to gonadal tissue and does not require the presence of germ cells. Our observations strongly support a primary role for Sry in mouse sex determination.  相似文献   

19.
Sequence and analysis of chromosome 2 of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The genome of the lower eukaryote Dictyostelium discoideum comprises six chromosomes. Here we report the sequence of the largest, chromosome 2, which at 8 megabases (Mb) represents about 25% of the genome. Despite an A + T content of nearly 80%, the chromosome codes for 2,799 predicted protein coding genes and 73 transfer RNA genes. This gene density, about 1 gene per 2.6 kilobases (kb), is surpassed only by Saccharomyces cerevisiae (one per 2 kb) and is similar to that of Schizosaccharomyces pombe (one per 2.5 kb). If we assume that the other chromosomes have a similar gene density, we can expect around 11,000 genes in the D. discoideum genome. A significant number of the genes show higher similarities to genes of vertebrates than to those of other fully sequenced eukaryotes. This analysis strengthens the view that the evolutionary position of D. discoideum is located before the branching of metazoa and fungi but after the divergence of the plant kingdom, placing it close to the base of metazoan evolution.  相似文献   

20.
Mammalian sex chromosomes share a small terminal region of homologous DNA sequences, which pair and recombine during male meiosis. Alleles in this region can be exchanged between X and Y chromosomes and are therefore inherited as if autosomal. Genes from this so-called pseudoautosomal region (PAR) are present in two doses in both males and females, and escape inactivation of the X chromosome in females. Indirect evidence suggests that there must be several pseudoautosomal genes, and several candidates have been proposed. Until now, the only gene that has been unequivocally located in the PAR is MIC2, which encodes a cell-surface antigen of unknown function. We now report the localization of a gene of known function to this region--the gene for the receptor of the haemopoietic regulator, granulocyte-macrophage colony stimulating factor. The chromosomal localization of this gene may be important in understanding the generation of M2 acute myeloid leukaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号