共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
基于支持矢量机和循环累积量的调制识别算法 总被引:2,自引:0,他引:2
利用通信信号的循环平稳特性,在循环累积量域内构造信号分类特征矢量,采用支持矢量机将分类特征矢量映射到高维空间并构建最优分类超平面,实现对QAM调制信号的自动识别。该算法解决了样本在低维空间中的不可分问题,具有良好的泛化推广性能,并且可在多种调制信号环境下实现对感兴趣信号类型的识别。理论分析和仿真结果均证明了算法的正确性和有效性。 相似文献
3.
Decision tree support vector machine based on genetic algorithm for multi-class classification 下载免费PDF全文
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods. 相似文献
4.
针对传统的最小二乘辨识算法要求误差遵循零均值、同方差的正态分布等不足,提出了L∞参数辨识算法。首先将L∞参数辨识问题转化成增加约束条件的线性规划问题最优解的求解问题;然后为了删除辨识中的冗余数据并用于在线辨识,给出了基于线性规划问题递推算法的L∞参数辨识算法。最后给出了仿真,结果验证了算法的有效性。 相似文献
5.
在分析了Kohonen自组织特征映射网络(SOFM)和学习矢量量化(LVQ)算法的基础上,提出一种基于改进的SOFM算法和LVQ2算法的混合学习矢量量化(HLVQ)方法,并建立了基于HLVQ的遥感影像非监督和监督分类的一般模型。通过与传统的统计分类方法和LVQ2网络分类器比较,HLVQ分类器总的分类性能更好、识别率更高。 相似文献
6.
针对已有空中目标识别方法存在的经验风险大、识别率低等不足,依据空中目标的分类原则和纠错码设计原则,设计了针对该问题的纠错码,并训练了码位分类器,最后给出了基于支持向量机的空中目标大类别分类算法。该方法采用纠错编码支持向量机的多类分类技术,降低了经验风险,能对误差进行自动修正,有效地提高了识别率和识别速度。最后给出了一个算例,结果证实了该算法的有效性,并给出了与同类算法的比较结果。 相似文献
7.
Fan Youping Chen Yunping Sun Wansheng & Li Yu. Inst. of Bulk Grid Security Faculty of Electrical Engineering Wuhan Univ. Wuhan P. R. China . Automation Coll. Chongqing Univ. Chongqing P. R. China 《系统工程与电子技术(英文版)》2005,16(4)
1.INTRODUCTION Thedatabasedmachinelearningasastatisticlearning methodplaysanimportantpartinmodernintelligent technology.Basedontheresearchofstatisticlearning theory,VapnikVNpointedouttheproblemofexpe riencedriskminimization,andpresentedthenotionof minimizingstructurerisk.Upontheabovetheory,herecomesthesupportvectormachine(SVM)algo rithm[1].Itisespeciallyaimedatfinitesamples,and wecanfinallygettheoptimalsolutionsfortheexist ed informationbutnotforthesituationoftraditional statistictheory… 相似文献
8.
估计GM(1,1)模型中参数的线性规划方法 总被引:1,自引:0,他引:1
估计GM(1,1)模型中的参数通常采用最小二乘准则,而在模型精度检验时又常采用平均相对误差。在平均相对误差达到最小准则或最大相对误差达到最小准则时,分别给出了估计GM(1,1)模型中参数的线性规划方法,并通过实例给出了不同极小化准则下数值结果的对比。数值结果表明,采用平均相对误差达到最小准则和最大相对误差达到最小准则比通常采用的最小二乘准则更合理,效果更好。 相似文献
9.
如何降低支持向量机海量训练样本的数目,是提高算法速度的关键。提出利用支持向量分布的几何特征建立基于特征空间中支持向量信息测度的快速算法,对于训练样本首先进行基于支持向量信息测度升序排序处理,然后根据训练样本提供的信息测度选择合适的训练样本子空间,在该样本子空间内采用乘性规则直接求取Lagrange因子,而不是传统的二次优化方法;最后针对附加残余样本进行交叉验证处理,直到算法满足收敛性准则。各种分类实验表明,提出的算法具有较好的性能,特别是在训练样本庞大、支持向量数量较多的情况下,能够较大幅度地减少计算复杂度,提高分类速度。 相似文献
10.
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning.Through introducing multiple kernel learning into the SVM incremental learning,large scale data set learning problem can be solved effectively.Furthermore,different punishments are adopted in allusion to the training subset and the acquired support vectors,which may help to improve the performance of SVM.Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning,but also improve the classification or prediction precision. 相似文献
11.
在建立了负荷分类五阶段过程模型的基础上,提出了用类内距离和与类间距离和之比作为负荷分类评价指标自适应选择模糊度参数的方法,同时用模拟退火算法和遗传算法对模糊C 均值(FCM) 算法的搜索性能进行优化. 实验结果表明,在负荷分类中常用的模糊度参数值m=2并不是最优的,负荷分类中模糊度参数的最优取值区间为[2.6,3.2]. 同时,改进算法还克服了传统 FCM 算法全局搜索能力不足的问题,提高了负荷分类的精确性和有效性. 相似文献
12.
Yeqing Liu Sanyang Liu Mingtao Gu . Department of Mathematical Sciences Xidian University Xi’an P. R. China . School of Science Henan University of Science & Technology Luoyang . PLA Unit 《系统工程与电子技术(英文版)》2010,21(1):138-141
Coordinate descent method is a unconstrained optimization technique. When it is applied to support vector machine (SVM), at each step the method updates one component of w by solving a one-variable sub-problem while fixing other components. All components of w update after one iteration. Then go to next iteration. Though the method converges and converges fast in the beginning, it converges slow for final convergence. To improve the speed of final convergence of coordinate descent method, Hooke and Jeeves a... 相似文献
13.
基于关联向量机回归的故障预测算法 总被引:2,自引:0,他引:2
针对一类故障预测问题提出了一种基于关联向量机(relevance vector machine, RVM)回归的故障预测算法。算法首先采用关联向量机模型对对象历史数据中隐含的故障演化信息进行学习,然后将所获取的关联向量机模型用于对象故障未来变化趋势的预测。预测过程采用多步时间序列预测中的递推计算的思想,并且将每一步预测的不确定性作为下一次预测迭代的输入要素加以充分的考虑。迭代过程中的一些关键量的获取采用了蒙特卡罗采样计算的思想,避免了对关联向量机核函数选取的限制。算法预测输出采用对象系统剩余寿命的随机分布形式,相对于传统预测算法的确定值形式的输出更加符合实际。将所提算法与传统算法进行比较,仿真实验结果证明所提算法要优于传统故障预测算法。 相似文献
14.
Global convergent algorithm for the bilevel linear
fractional-linear programming based on
modified convex simplex method 总被引:1,自引:0,他引:1 下载免费PDF全文
A global convergent algorithm is proposed to solve bilevel linear fractional-linear programming,which is a special class of bilevel programming.In our algorithm,replacing the lower level problem by its dual gap equaling to zero,the bilevel linear fractional-linear programming is transformed into a traditional single level programming problem,which can be transformed into a series of linear fractional programming problem.Thus,the modified convex simplex method is used to solve the infinite linear fractional programming to obtain the global convergent solution of the original bilevel linear fractional-linear programming.Finally,an example demonstrates the feasibility of the proposed algorithm. 相似文献
15.
针对复杂环境中的声目标特征提取与选择问题,结合声信号时频域的特点,提出了一种时频域相结合的特征提取方法。首先,对信号进行小波分解,达到去噪目的;然后,将短时能量、短时平均幅值、过零率及频带能量值作为原始特征矢量,并结合Fisher判别准则进行特征选择,以此构造低维特征向量;最后,对两类声目标的实测样本数据进行特征提取,并采用支持向量机和K近邻两种分类器对该特征提取方法的有效性进行校验。实验结果表明,采用“时域+频域+线性判别分析”的特征提取方法简单有效,且与单一时域或频域的特征提取方法相比,识别率更高。 相似文献
16.
基于粗糙集融合支持向量机的水质预警模型 总被引:2,自引:1,他引:2
为解决因水质预警耦合因素多,预警模式复杂以及信息不完整所引起的水质预警精度低问题,提出了粗糙集融合支持向量机(RS-SVM)的水质预警模型.首先采用粗糙集对14个初始预警指标进行属性约简,去除冗余或干扰特征,得到基于5个核心预警指标的数据集,以此数据集对支持向量机进行训练优化,构建RS-SVM水质预警模型.运用该模型对江苏宜兴市集约化河蟹养殖池塘水质进行预警,实证对比分析,对于不同的警度级别,预警精度都在91%以上,与标准支持向量机和BP神经网络模型相比,该模型不仅具有计算效率高、预警性能好,且预警结果与实际情况比较吻合,为集约化水产养殖水质预警提供了一种新思路. 相似文献
17.
利用最小二乘支持向量机(least square support vector machine, LSSVM)在线辨识时变非线性过程时,设定其核参数较困难,设定的核参数不能适应过程变化而进行自动调节。针对此问题,提出了一种基于核参数分时段调节型LSSVM的在线过程辨识方法。该方法利用了三个LSSVM,并将整个建模预测时期分为启动阶段和若干个工作周期。初始阶段末和每个工作周期末选定预测误差和最小的LSSVM,作为后续工作周期的工作LSSVM,同时根据启发式规则为另两个LSSVM设定核参数,它们作为后续工作周期的比较LSSVM。该方法设定核参数相对容易,而且核参数具有一定的自动调节能力。数字仿真显示,从统计角度而言,所提方法比传统方法有更好的适应性。 相似文献
18.
一种新的支持向量机快速训练算法 总被引:1,自引:0,他引:1
针对大规模数据集的分类中支持向量机的训练,为解决选取样本集合边界向量时需事先判定样本集合是否线性可分的问题,提出一种基于密度法的支持向量预选取方法。该方法不需要事先判定训练样本是否线性可分,具有较强的抗击噪音点和孤立点干扰的能力,并且计算简单,易于实现。实验结果证明了这种方法是有效的。 相似文献
19.
针对传统支持向量机由于样本中存在孤立点或噪声而导致的过学习问题,通过分析模糊支持向量机和临近支持向量机的特点,借鉴它们的优点:模糊隶属度和临近超平面,提出了一种数据处理方法。该方法考虑了样本点到类中心的距离与样本对分类的贡献率的关系。这种改进使分类更为清晰和准确。结果表明:采用新的模糊隶属度模糊临近支持向量机算法有较高的识别率,但也耗费了较多的训练时间。 相似文献
20.
Xie BinAuthor vitae 《系统工程与电子技术(英文版)》2008,19(6):1272-1276
With an aim to the fact that the K-means clustering algorithm usually ends in local optimization and is hard to harvest global optimization, a new web clustering method is presented based on the chaotic social evolutionary programming (CSEP) algorithm. This method brings up the manner of that a cognitive agent inherits a paradigm in clustering to enable the cognitive agent to acquire a chaotic mutation operator in the betrayal. As proven in the experiment, this method can not only effectively increase web clustering efficiency, but it can also practically improve the precision of web clustering. 相似文献