首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
岩浆脱气动力学是地球动力学的一个重要方面。介绍了H2 O和CO2 在岩浆中溶解、气泡成核、气泡生长与上升以及岩浆喷发等过程的研究成果。由前人的研究结果可知 ,压力降低使得气体在岩浆中过饱和是气泡形成的主要原因 ;气体过饱和度增大加速气体的释放和气泡的生长 ,进而导致岩浆的浮力增大 ,岩浆上升速度加快 ;气泡膨胀和加速作用发生在岩浆爆裂之前 ,并且是引起爆裂的真正原因。此外 ,CO2 的溶解度较小和岩浆中CO2 含量较高是气泡中CO2 含量高的主要原因。同时也指出 ,文献中的模型与岩浆喷发的实际情况相比 ,体系成分过于简单 ,还有待进一步完善。对岩浆脱气动力学研究作了客观评价和展望。  相似文献   

2.
采用水/CO2体系模拟研究钢液/( N2、H2)过饱和体系中气泡生长动力学行为,分别建立水溶液和钢液中气泡形核长大机理模型。基于三种不同的气泡生长数学模型,分别研究水/CO2和钢液/( N2、H2)体系数学模型中气泡生长动力学,并采用水模型实验数据对数学模型进行验证。分析钢液/( N2、H2)体系前期和后期处理压力以及钢液深度等因素对气泡生长的影响。研究表明:采用气泡浮选去除夹杂物技术时,前期处理压力对气泡生长有显著促进作用;后期处理压力对气泡生长有阻碍作用,随着后期处理压力的升高影响逐渐加强;钢液深度对气泡生长有阻碍作用,随着钢液深度的增加影响逐渐减弱;相比氮气,钢液中氢气气泡析出长大更快。  相似文献   

3.
为研究气泡在熔体中的动力学,自行设计了圆柱形可视化流道,直接将CO2气体注入聚合物熔体中,观察CO2气泡在小孔延伸流场中不同位置区域时,其形态、大小、运动、变形等动力学现象.并从经典两相流理论的角度出发,分析了流场结构参数、加工条件对气泡在聚合物熔体中形态、分布、运动变化等的影响.实验结果表明:气相在熔体中是以泡状存在的,单一的大气泡经过延伸后,将发生破裂,成为许多细碎的小气泡,且破裂的小气泡的大小、分布、密度等与加工温度、速度、进气压力等有关;气泡经过小孔延伸后破裂,使气熔两相趋于混合,有利于CO2作为发泡剂在泡沫塑料制品生产中的应用.  相似文献   

4.
综合分析气泡的受力,基于动力学平衡建立了长大-脱离的两阶段气泡运动方程.对顶部浸没管口处形成气泡的尺寸进行直接数值预测.分析了气体流量、管口内外直径以及表面张力、液体粘度和液体密度对气泡尺寸的影响.并将计算结果与实验结果进行了对比,两者吻合较好,变化趋势一致.研究表明:气泡尺寸随着气体流量以及管口的内径和外径的增加而增大.气体流量和管口内外径都是影响气泡尺寸的重要因素;在一定气体流量下,气泡的直径随着表面张力和液体粘度的增加而增大,而随着液体密度的增加而减少;随着气体流量的增加,液体粘度对气泡尺寸的影响增强,而液体密度以及表面张力对气泡尺寸的影响减弱.  相似文献   

5.
对环形喷管与圆形喷管水下气泡生成进行了实验对比研究.利用自行设计建设的水下气体射流实验系统,结合高速摄影仪图像记录及图像处理,比较分析了两种喷管气泡生成的异同.研究表明:对于圆形喷管,其气泡生成随气体流量增加依次呈现单周期、双周期和三周期特性;而环形喷管,在初始低流量时,气体在环形喷管出口截面呈随机无规则喷发,一旦形成稳定环形气泡则直接进入三周期区制;两种喷管在后续气泡断裂时整体气泡顶部上浮高度也不同;3类气泡所受各种力处于动态变化之中,且3类气泡所受主要控制力不同.   相似文献   

6.
采用两阶段模型,使用MATLAB语言编程,对中间包气幕挡墙砖中气泡的形成过程进行了数学模拟,研究了影响气泡大小的因素。结果表明:中间包内所形成气泡的大小主要受气体流量、钢液流速和气孔直径的影响。气泡直径随气体流量的增大而增大,随钢水流速的增大而减小,随气孔直径的增大而增长。孔径增大对气泡直径的影响较明显,孔径较小且只在较小范围内波动时,钢液流速和气体流量是主要影响因素。  相似文献   

7.
《科学世界》2021,(8):72-73
火山活动与岩石 ⊙岩浆、火山喷出物、火成岩 在地表深处,有些区域的岩石因地球内部的热量而熔化成黏稠的岩浆.在地表附近由岩浆房中岩浆喷发所形成的地形就是火山. 地下的岩浆中含有水和二氧化碳.随着岩浆上升,水和二氧化碳变成气泡开始膨胀.这些气泡爆炸般急剧膨胀的结果就是火山喷发.喷出地表的物质称为火山喷出物.  相似文献   

8.
以煤气化渣水回收系统中的蒸发热水塔为研究对象,对热水塔内孔径为5 mm的塔板上单气泡的形成和运动特性进行了可视化实验,借助高速相机和图像处理方法得到了气泡整个生长周期的形变过程及运动特性。实验结果表明:气泡的生长周期分为3个阶段:形成区、上升区和振荡破碎区。气泡等效半径在形成区迅速增大,在上升区和振荡破碎区缓慢增加;气泡长径比在形成区呈衰减变化,而在振荡破碎区变化规律性较差;蒸汽气泡的y向形心运动速率先增大后平稳波动,氮气气泡的y向形心运动速率处于一直增加的状态,但在振荡破碎区的运动规律较差,蒸汽和混合气体气泡在冷凝过程中均出现了中空现象。对于混合气体气泡,氮气流量的增加导致气泡形成和破碎的时间变短,阻碍了蒸汽传热冷凝。  相似文献   

9.
基于高速摄像技术记录静止液体中气泡生长及脱离过程,并采用Image-Pro Plus 6.0软件进行后处理,研究了两种管径下气泡生长过程的形状变化.实验结果表明:由于不同管径下气泡生长过程中起主导的作用力不同,导致小管径生成气泡的高宽比随时间变化呈先陡后缓的上升趋势,大管径生成气泡的高宽比随时间变化呈先缓后陡的上升趋势;由于生长前期不满足脱离条件,小管径生成的气泡会出现下边缘向液体侧迁移的现象;大管径生成的气泡在气液面与固液面夹角小于接触角时即达到脱离条件,因此不会出现迁移;3.80 mm气泡脱离上浮的临界高宽比稍大于9.28 mm气泡相应值.  相似文献   

10.
利用高速摄影仪对双联毛细管管口气泡的生长和脱离特性进行了可视化实验研究.实验结果表明,当液体淹没双联毛细管管口时,在管内无气体流动情况下,管径大和亲水的毛细管易于成为液体通道,而管径小和憎水的毛细管易于成为气体通道;在有气体流动情况下,管径大的毛细管成为气体通道,而管径小的则成为液体通道.当气室的进气流量增大时,双联毛细管端口处气泡脱离直径变化很小,而气泡的脱离周期却随之明显减小,双联毛细管的气泡生长和脱离会发生明显的相互影响.此外,液体流速对气泡的生长和脱离有很大的影响,液体流速越大,气泡脱离越快,气泡的脱离直径则越小;在液体流速较大时,靠近流体进口处的毛细管端口气泡生长和脱离明显加快,从而导致相邻毛细管端口的液体回流现象.  相似文献   

11.
图集的统一协调,对图集质量有很大影响。本文是作者在编制北京市农业区划地图集的实践基础上,根据地图信息传输论的观点,对农业区划地图集的统一协调的内容及方法进行了探讨。试图总结编制这类图集的统一协调模式,以供读者编图时参考。  相似文献   

12.
研究了国家法的抽象正义观与民间法的情理正义观,认为西方国家法的抽象正义观与东方民间法的情理正义观存在实质的不同,原因在于思维方式、超验与经验传统、政治结构的差别。在现代法治理念下,传统民间法所代表的正义观将向混合正义观转型,西方法治所代表的国家法抽象正义观是其骨架。  相似文献   

13.
给出了一维非自治时滞系统点态退化的一个例子,拓宽了该领域的研究。  相似文献   

14.
利用对位异构体的对称性由核磁共振氢谱测定了工业十二烷基苯在硝硫混酸中的硝化选择性,发现一硝化产物中对位异构体的比例为75% ̄80%。以月桂酸和苯为原料,经氯化、酰化和还原合成了正十二烷基苯。在同样条件下研究了正十二烷基苯的硝化,由核磁共振氢谱和气相色谱分析,发现一硝化产物中对位异构体的比例仅为60%。根据空间位阻效应,对结果进行了讨论,并与甲苯,乙苯,异丙苯等短链烷基苯的硝化结果进行了比较。  相似文献   

15.
YBCO掺杂效应研究   总被引:3,自引:0,他引:3  
介绍了YBCO掺杂的基础知识,总结了YBCO各个位置采用典型元素掺杂而导致的超导电性和结构的变化,阐述了掺杂对YBCO的重要影响,并简介了当前YBCO掺杂效应研究中的几个热点问题.  相似文献   

16.
由于有限群的Lagrange定理的逆不成立,因此,n较大时要确定n次交代群An的所有子群或对An阶数的每一个正因数,确定是否存在这个阶数的子群是较困难的问题.文章通过对5-循环置换各次方幂的计算及其研究,构造出了A5的5个12阶子集,并证明了每一个子集都是A5的12阶子群,最后对A5的部分阶的子群做了总结.  相似文献   

17.
18.
为了找出诱发高频机组基础不良振动的原因,从基础计算模型方面对基础激励与响应进行了分析,以两个高频机组基础为动测实例,经模态分析得出钢筋混凝土构架式基础竖向1阶振动与电机产生共振;应用功率谱法对动力机组及基础平台进行动测,得出平台异常响应频率66Hz为水泵工作频率,调整机器的工作频率可避开不良振源影响,达到明显的减振效果。由此而知,动力机器基础出现不良振动时,不可盲目改变结构的动力特性,应在机器不同工况比如:停机、起机及正常转速下,对机器及基础进行动测并对振动信号进行比较分析,以制定出行之有效的减振方法。  相似文献   

19.
基于“前沿分支”的观点研究了圈幂补图的树宽,首先确定了它的树宽下界,又给出了达到此下界的标号,从而得到了它的树宽表达式。  相似文献   

20.
报告鸡法氏囊病的流行状况,主要症状,剖检情况及诊断,提出了综合性防治措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号