首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Dimitrova N  Chen YC  Spector DL  de Lange T 《Nature》2008,456(7221):524-528
Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2(fl/-)) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination.  相似文献   

2.
Immunoglobulin variable region exons are assembled in developing B cells by V(D)J recombination. Once mature, these cells undergo class-switch recombination (CSR) when activated by antigen. CSR changes the heavy chain constant region exons (Ch) expressed with a given variable region exon from Cmu to a downstream Ch (for example, Cgamma, Cepsilon or Calpha), thereby switching expression from IgM to IgG, IgE or IgA. Both V(D)J recombination and CSR involve the introduction of DNA double-strand breaks and their repair by means of end joining. For CSR, double-strand breaks are introduced into switch regions that flank Cmu and a downstream Ch, followed by fusion of the broken switch regions. In mammalian cells, the 'classical' non-homologous end joining (C-NHEJ) pathway repairs both general DNA double-strand breaks and programmed double-strand breaks generated by V(D)J recombination. C-NHEJ, as observed during V(D)J recombination, joins ends that lack homology to form 'direct' joins, and also joins ends with several base-pair homologies to form microhomology joins. CSR joins also display direct and microhomology joins, and CSR has been suggested to use C-NHEJ. Xrcc4 and DNA ligase IV (Lig4), which cooperatively catalyse the ligation step of C-NHEJ, are the most specific C-NHEJ factors; they are absolutely required for V(D)J recombination and have no known functions other than C-NHEJ. Here we assess whether C-NHEJ is also critical for CSR by assaying CSR in Xrcc4- or Lig4-deficient mouse B cells. C-NHEJ indeed catalyses CSR joins, because C-NHEJ-deficient B cells had decreased CSR and substantial levels of IgH locus (immunoglobulin heavy chain, encoded by Igh) chromosomal breaks. However, an alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells. In the absence of C-NHEJ, this alternative end-joining pathway also frequently joins Igh locus breaks to other chromosomes to generate translocations.  相似文献   

3.
Zha S  Guo C  Boboila C  Oksenych V  Cheng HL  Zhang Y  Wesemann DR  Yuen G  Patel H  Goff PH  Dubois RL  Alt FW 《Nature》2011,469(7329):250-254
Classical non-homologous DNA end-joining (NHEJ) is a major mammalian DNA double-strand-break (DSB) repair pathway. Deficiencies for classical NHEJ factors, such as XRCC4, abrogate lymphocyte development, owing to a strict requirement for classical NHEJ to join V(D)J recombination DSB intermediates. The XRCC4-like factor (XLF; also called NHEJ1) is mutated in certain immunodeficient human patients and has been implicated in classical NHEJ; however, XLF-deficient mice have relatively normal lymphocyte development and their lymphocytes support normal V(D)J recombination. The ataxia telangiectasia-mutated protein (ATM) detects DSBs and activates DSB responses by phosphorylating substrates including histone H2AX. However, ATM deficiency causes only modest V(D)J recombination and lymphocyte developmental defects, and H2AX deficiency does not have a measurable impact on these processes. Here we show that XLF, ATM and H2AX all have fundamental roles in processing and joining DNA ends during V(D)J recombination, but that these roles have been masked by unanticipated functional redundancies. Thus, combined deficiency of ATM and XLF nearly blocks mouse lymphocyte development due to an inability to process and join chromosomal V(D)J recombination DSB intermediates. Combined XLF and ATM deficiency also severely impairs classical NHEJ, but not alternative end-joining, during IgH class switch recombination. Redundant ATM and XLF functions in classical NHEJ are mediated by ATM kinase activity and are not required for extra-chromosomal V(D)J recombination, indicating a role for chromatin-associated ATM substrates. Correspondingly, conditional H2AX inactivation in XLF-deficient pro-B lines leads to V(D)J recombination defects associated with marked degradation of unjoined V(D)J ends, revealing that H2AX has a role in this process.  相似文献   

4.
The genes encoding the variable regions of lymphocyte antigen receptors are assembled from variable (V), diversity (D) and joining (J) gene segments. V(D)J recombination is initiated by the recombinase activating gene (RAG)-1 and -2 proteins, which introduce DNA double-strand breaks between the V, D and J segments and their flanking recombination signal sequences (RSSs). Generally expressed DNA repair proteins then carry out the joining reaction. The conserved heptamer and nonamer sequences of the RSSs are separated by non-conserved spacers of 12 or 23 base pairs (forming 12-RSSs and 23-RSSs). The 12/23 rule, which is mediated at the level of RAG-1/2 recognition and cutting, specifies that V(D)J recombination occurs only between a gene segment flanked by a 12-RSS and one flanked by a 23-RSS. Vbeta segments are appended to DJbeta rearrangements, with little or no direct Vbeta to Jbeta joining, despite 12/23 compatibility of Vbeta 23-RSSs and Jbeta12-RSSs. Here we use embryonic stem cells and mice with a modified T-cell receptor (TCR)beta locus containing only one Dbeta (Dbeta1) gene segment and one Jbeta (Jbeta1) gene cluster to show that the 5' Dbeta1 12-RSS, but not the Jbeta1 12-RSSs, targets rearrangement of a diverse Vbeta repertoire. This targeting is precise and position-independent. This additional restriction on V(D)J recombination has important implications for the regulation of variable region gene assembly and repertoire development.  相似文献   

5.
6.
Mammalian cells repair DNA double-strand breaks (DSBs) through either homologous recombination or non-homologous end joining (NHEJ). V(D)J recombination, a cut-and-paste mechanism for generating diversity in antigen receptors, relies on NHEJ for repairing DSBs introduced by the Rag1-Rag2 protein complex. Animals lacking any of the seven known NHEJ factors are therefore immunodeficient. Nevertheless, DSB repair is not eliminated entirely in these animals: evidence of a third mechanism, 'alternative NHEJ', appears in the form of extremely rare V(D)J junctions and a higher rate of chromosomal translocations. The paucity of these V(D)J events has suggested that alternative NHEJ contributes little to a cell's overall repair capacity, being operative only (and inefficiently) when classical NHEJ fails. Here we find that removing certain portions of murine Rag proteins reveals robust alternative NHEJ activity in NHEJ-deficient cells and some alternative joining activity even in wild-type cells. We propose a two-tier model in which the Rag proteins collaborate with NHEJ factors to preserve genomic integrity during V(D)J recombination.  相似文献   

7.
The mechanisms by which eukaryotic cells sense DNA double-strand breaks (DSBs) in order to initiate checkpoint responses are poorly understood. 53BP1 is a conserved checkpoint protein with properties of a DNA DSB sensor. Here, we solved the structure of the domain of 53BP1 that recruits it to sites of DSBs. This domain consists of two tandem tudor folds with a deep pocket at their interface formed by residues conserved in the budding yeast Rad9 and fission yeast Rhp9/Crb2 orthologues. In vitro, the 53BP1 tandem tudor domain bound histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues were also required for recruitment of 53BP1 to DSBs. Suppression of DOT1L, the enzyme that methylates Lys 79 of histone H3, also inhibited recruitment of 53BP1 to DSBs. Because methylation of histone H3 Lys 79 was unaltered in response to DNA damage, we propose that 53BP1 senses DSBs indirectly through changes in higher-order chromatin structure that expose the 53BP1 binding site.  相似文献   

8.
9.
Misrepair of DNA double-strand breaks produced by the V(D)J recombinase (the RAG1/RAG2 proteins) at immunoglobulin (Ig) and T cell receptor (Tcr) loci has been implicated in pathogenesis of lymphoid malignancies in humans and in mice. Defects in DNA damage response factors such as ataxia telangiectasia mutated (ATM) protein and combined deficiencies in classical non-homologous end joining and p53 predispose to RAG-initiated genomic rearrangements and lymphomagenesis. Although we showed previously that RAG1/RAG2 shepherd the broken DNA ends to classical non-homologous end joining for proper repair, roles for the RAG proteins in preserving genomic stability remain poorly defined. Here we show that the RAG2 carboxy (C) terminus, although dispensable for recombination, is critical for maintaining genomic stability. Thymocytes from 'core' Rag2 homozygotes (Rag2(c/c) mice) show dramatic disruption of Tcrα/δ locus integrity. Furthermore, all Rag2(c/c) p53(-/-) mice, unlike Rag1(c/c) p53(-/-) and p53(-/-) animals, rapidly develop thymic lymphomas bearing complex chromosomal translocations, amplifications and deletions involving the Tcrα/δ and Igh loci. We also find these features in lymphomas from Atm(-/-) mice. We show that, like ATM-deficiency, core RAG2 severely destabilizes the RAG post-cleavage complex. These results reveal a novel genome guardian role for RAG2 and suggest that similar 'end release/end persistence' mechanisms underlie genomic instability and lymphomagenesis in Rag2(c/c) p53(-/-) and Atm(-/-) mice.  相似文献   

10.
Lee K  Zhang Y  Lee SE 《Nature》2008,454(7203):543-546
Chromosome translocations are frequently associated with many types of blood-related cancers and childhood sarcomas. Detection of chromosome translocations assists in diagnosis, treatment and prognosis of these diseases; however, despite their importance to such diseases, the molecular mechanisms leading to chromosome translocations are not well understood. The available evidence indicates a role for non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs) in their origin. Here we develop a yeast-based system that induces a reciprocal chromosome translocation by formation and ligation of breaks on two different chromosomes. We show that interchromosomal end joining is efficiently suppressed by the Tel1- and Mre11-Rad50-Xrs2-dependent pathway; this is distinct from the role of Tel1 in telomeric integrity and from Mec1- and Tel1-dependent checkpoint controls. Suppression of DSB-induced chromosome translocations depends on the kinase activity of Tel1 and Dun1, and the damage-induced phosphorylation of Sae2 and histone H2AX proteins. Tel1- and Sae2-dependent tethering and promotion of 5' to 3' degradation of broken chromosome ends discourage error-prone NHEJ and interchromosomal NHEJ, preserving chromosome integrity on DNA damage. Our results indicate that, like human ATM, Tel1 serves as a key regulator for chromosome integrity in the pathway that reduces the risk for DSB-induced chromosome translocations, and are probably pertinent to the oncogenic chromosome translocations in ATM-deficient cells.  相似文献   

11.
在细胞内可变区基因(多样化基因)连接区基因片段重组(variable(diversity)joining recombination,V(D)J)与免疫球蛋白的类别转换重组(class switch recombination,CSR)过程中会产生程序性DNA双链断裂(DNA double strand break,DSB).当检测到DSB发生时DNA损伤反应(DNA damage response,DDR)被启动.DDR缺陷的病人具有原发性免疫缺陷表型(primary immunodeficiency,PID).总结了V(D)J重组与CSR产生DDR的分子机制,综述了V(D)J重组与CSR过程中DDR相关蛋白缺陷引起的原发性免疫缺陷表型.  相似文献   

12.
XRCC4 is a non-homologous end-joining protein employed in DNA double strand break repair and in V(D)J recombination. In mice, XRCC4-deficiency causes a pleiotropic phenotype, which includes embryonic lethality and massive neuronal apoptosis. When DNA damage is not repaired, activation of the cell cycle checkpoint protein p53 can lead to apoptosis. Here we show that p53-deficiency rescues several aspects of the XRCC4-deficient phenotype, including embryonic lethality, neuronal apoptosis, and impaired cellular proliferation. However, there was no significant rescue of impaired V(D)J recombination or lymphocyte development. Although p53-deficiency allowed postnatal survival of XRCC4-deficient mice, they routinely succumbed to pro-B-cell lymphomas which had chromosomal translocations linking amplified c-myc oncogene and IgH locus sequences. Moreover, even XRCC4-deficient embryonic fibroblasts exhibited marked genomic instability including chromosomal translocations. Our findings support a crucial role for the non-homologous end-joining pathway as a caretaker of the mammalian genome, a role required both for normal development and for suppression of tumours.  相似文献   

13.
A DNA damage checkpoint response in telomere-initiated senescence   总被引:1,自引:0,他引:1  
Most human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks. These markers include nuclear foci of phosphorylated histone H2AX and their co-localization with DNA repair and DNA damage checkpoint factors such as 53BP1, MDC1 and NBS1. We also show that senescent cells contain activated forms of the DNA damage checkpoint kinases CHK1 and CHK2. Furthermore, by chromatin immunoprecipitation and whole-genome scanning approaches, we show that the chromosome ends of senescent cells directly contribute to the DNA damage response, and that uncapped telomeres directly associate with many, but not all, DNA damage response proteins. Finally, we show that inactivation of DNA damage checkpoint kinases in senescent cells can restore cell-cycle progression into S phase. Thus, we propose that telomere-initiated senescence reflects a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres.  相似文献   

14.
DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.  相似文献   

15.
J H?chtl  H G Zachau 《Nature》1983,302(5905):260-263
Functional kappa light chain genes are formed during B-lymphocyte differentiation by the joining of initially separate V and J gene segments. It has been suggested that the intervening DNA is deleted, however the recent reports of what appear to be the reciprocal products of V and J recombination (back-to-back conserved V and J flanking sequences, called f-fragments) in DNA from mature lymphocytes make a simple deletion model unlikely. An alternative scheme involving unequal sister chromatid exchange has been proposed, supported by the evidence that the f-fragments seem to have segregated from the chromosome carrying the reciprocal complete kappa light chain gene (this and other schemes are briefly reviewed in ref. 8). We report here the analysis of a mouse myeloma (MOPC 41), in which a productive (kappa+) and a non-productive (kappa-) rearrangement has occured, which may help to clarify the mechanism of V-J joining. The aberrant rearrangement has led to the joining of a J1 gene segment to a sequence unrelated to any V gene (L10), and which in the germ line is flanked by a sequence resembling a V region recombination signal sequence. In this case no segregation of the reciprocal recombination products (kappa-41 and f41), which is a required step in sister chromatid exchange models, has taken place. An inversion model provides the simplest explanation of this J rearrangement.  相似文献   

16.
A single double-strand break (DSB) induced by HO endonuclease triggers both repair by homologous recombination and activation of the Mec1-dependent DNA damage checkpoint in budding yeast. Here we report that DNA damage checkpoint activation by a DSB requires the cyclin-dependent kinase CDK1 (Cdc28) in budding yeast. CDK1 is also required for DSB-induced homologous recombination at any cell cycle stage. Inhibition of homologous recombination by using an analogue-sensitive CDK1 protein results in a compensatory increase in non-homologous end joining. CDK1 is required for efficient 5' to 3' resection of DSB ends and for the recruitment of both the single-stranded DNA-binding complex, RPA, and the Rad51 recombination protein. In contrast, Mre11 protein, part of the MRX complex, accumulates at unresected DSB ends. CDK1 is not required when the DNA damage checkpoint is initiated by lesions that are processed by nucleotide excision repair. Maintenance of the DSB-induced checkpoint requires continuing CDK1 activity that ensures continuing end resection. CDK1 is also important for a later step in homologous recombination, after strand invasion and before the initiation of new DNA synthesis.  相似文献   

17.
Chromosomal translocations involving the immunoglobulin switch region are a hallmark feature of B-cell malignancies. However, little is known about the molecular mechanism by which primary B cells acquire or guard against these lesions. Here we find that translocations between c-myc and the IgH locus (Igh) are induced in primary B cells within hours of expression of the catalytically active form of activation-induced cytidine deaminase (AID), an enzyme that deaminates cytosine to produce uracil in DNA. Translocation also requires uracil DNA glycosylase (UNG), which removes uracil from DNA to create abasic sites that are then processed to double-strand breaks. The pathway that mediates aberrant joining of c-myc and Igh differs from intrachromosomal repair during immunoglobulin class switch recombination in that it does not require histone H2AX, p53 binding protein 1 (53BP1) or the non-homologous end-joining protein Ku80. In addition, translocations are inhibited by the tumour suppressors ATM, Nbs1, p19 (Arf) and p53, which is consistent with activation of DNA damage- and oncogenic stress-induced checkpoints during physiological class switching. Finally, we demonstrate that accumulation of AID-dependent, IgH-associated chromosomal lesions is not sufficient to enhance c-myc-Igh translocations. Our findings reveal a pathway for surveillance and protection against AID-dependent DNA damage, leading to chromosomal translocations.  相似文献   

18.
Pei H  Zhang L  Luo K  Qin Y  Chesi M  Fei F  Bergsagel PL  Wang L  You Z  Lou Z 《Nature》2011,470(7332):124-128
p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX-MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser?102 of MMSET. Thus, we propose that a pathway involving γH2AX-MDC1-MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.  相似文献   

19.
Zhou L  Mitra R  Atkinson PW  Hickman AB  Dyda F  Craig NL 《Nature》2004,432(7020):995-1001
Transposons are DNA sequences that encode functions that promote their movement to new locations in the genome. If unregulated, such movement could potentially insert additional DNA into genes, thereby disrupting gene expression and compromising an organism's viability. Transposable elements are classified by their transposition mechanisms and by the transposases that mediate their movement. The mechanism of movement of the eukaryotic hAT superfamily elements was previously unknown, but the divergent sequence of hAT transposases from other elements suggested that these elements might use a distinct mechanism. Here we have analysed transposition of the insect hAT element Hermes in vitro. Like other transposons, Hermes excises from DNA via double-strand breaks between the donor-site DNA and the transposon ends, and the newly exposed transposon ends join to the target DNA. Interestingly, the ends of the donor double-strand breaks form hairpin intermediates, as observed during V(D)J recombination, the process which underlies the combinatorial formation of antigen receptor genes. Significant similarities exist in the catalytic amino acids of Hermes transposase, the V(D)J recombinase RAG, and retroviral integrase superfamily transposases, thereby linking the movement of transposable elements and V(D)J recombination.  相似文献   

20.
DNA double-strand breaks (DSBs) are generated by the recombination activating gene (RAG) endonuclease in all developing lymphocytes as they assemble antigen receptor genes. DNA cleavage by RAG occurs only at the G1 phase of the cell cycle and generates two hairpin-sealed DNA (coding) ends that require nucleolytic opening before their repair by classical non-homologous end-joining (NHEJ). Although there are several cellular nucleases that could perform this function, only the Artemis nuclease is able to do so efficiently. Here, in vivo, we show that in murine cells the histone protein H2AX prevents nucleases other than Artemis from processing hairpin-sealed coding ends; in the absence of H2AX, CtIP can efficiently promote the hairpin opening and resection of DNA ends generated by RAG cleavage. This CtIP-mediated resection is inhibited by γ-H2AX and by MDC-1 (mediator of DNA damage checkpoint 1), which binds to γ-H2AX in chromatin flanking DNA DSBs. Moreover, the ataxia telangiectasia mutated (ATM) kinase activates antagonistic pathways that modulate this resection. CtIP DNA end resection activity is normally limited to cells at post-replicative stages of the cell cycle, in which it is essential for homology-mediated repair. In G1-phase lymphocytes, DNA ends that are processed by CtIP are not efficiently joined by classical NHEJ and the joints that do form frequently use micro-homologies and show significant chromosomal deletions. Thus, H2AX preserves the structural integrity of broken DNA ends in G1-phase lymphocytes, thereby preventing these DNA ends from accessing repair pathways that promote genomic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号