共查询到20条相似文献,搜索用时 62 毫秒
1.
为克服标准粒子群算法搜索后期收敛速度慢、容易陷入局部最优的缺点,通过引进自适应惯性权重因子平衡标准粒子群优化算法的全局搜索和局部改良能力,同时设计了均匀分布变异和高斯分布变异相结合的粒子群混合纵向多变异策略,来提高算法摆脱局部极值和局部寻优的能力.根据提出的改进算法流程,针对公认的Sphere,Rastrigin,Griewank和Salomon四种标准测试函数进行了收敛精度和收敛速度的测试.测试结果表明,在标准粒子群、自适应权重粒子群、自适应变异粒子群和自适应混合多变异粒子群4种算法中,提出的新算法具有最好的全局最优值搜索能力和最稳定的全局收敛特性,且在提高收敛速度的同时,有效地避免了早熟收敛问题. 相似文献
2.
《云南民族大学学报(自然科学版)》2017,(4):306-309
在研究神经网络优化的问题上,粒子群优化算法被广泛应用.针对基本粒子群优化算法收敛速度慢和易陷入局部最优等问题,提出了一种改进的粒子群优化算法.该算法除了采用线性惯性权值和进化速度-聚集度动态惯性权值相结合的方式来调整其权值,还将一种新颖的收缩因子引入到算法中.通过对4种典型测试函数进行仿真测试,实验结果表明新算法在收敛速度、收敛精度、改善优化性能上完全优于基本的粒子群优化算法,有效避免了基本群优化算法的缺陷. 相似文献
3.
张寅 《苏州科技学院学报(自然科学版)》2011,28(3):62-65
为了改善粒子群优化算法在收敛后期极易陷入局部最优的缺陷,提出了在非线性惯性权重策略粒子群算法的前提下,对陷入局部极值区域的粒子进行位置变异,使得粒子能很好地跳出局部极值区域,并在迭代前期及后期采用不同速度变异策略使处于个体极值点的粒子改变速度,能够有效地提高算法的前期全局搜索能力和后期局部开挖能力。通过4个经典测试函数验证了该算法具有更好的优化性能。 相似文献
4.
一种动态改变惯性权的自适应粒子群算法 总被引:41,自引:2,他引:41
针对惯性权值线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权的自适应粒子群算法(DCW).在该算法中引入了参数粒子群进化速度因子和聚集度因子,并根据这2个参数对粒子群算法搜索能力的影响,将惯性因子表示为粒子群进化速度因子和聚集度因子的函数.在每次迭代时算法可根据当前粒子群进化速度因子和聚集度因子动态地改变惯性权值,从而使算法具有动态自适应性.对几种典型函数的测试结果表明,DCW算法的收敛速度明显优于LDW算法,收敛精度也有所提高. 相似文献
5.
张世勇 《重庆工商大学学报(自然科学版)》2007,24(3):241-245
将禁忌搜索思想引入粒子群优化算法中,改进惯性权重,添加罚函数重新构造适应度函数;在此基础上,提出了一种基于禁忌搜索的新的混合粒子群优化算法(NHPSO),通过4个标准测试函数实验,结果表明:NHPSO算法比基本粒子群优化算法(PSO)具有更好的全局寻优能力、更快的收敛速度以及获得更高精度解的能力。 相似文献
6.
针对粒子群优化算法中存在的局部收敛问题,提出一种融合惯性权重调整和群体最佳位置变异两种策略的粒子群优化算法.该算法将个体粒子的状态信息引入惯性权重策略,独立调整每个粒子的惯性权值,体现个体粒子对权重需求的差异.在最佳位置变异策略中采用分级思想,根据粒子群的搜索状态选择相应的极值变异方式,使变异操作更具针对性.实验结果表明,该算法对多个测试函数都表现出良好的优化性能,能有效避免局部收敛问题,提高了粒子群的全局搜索能力. 相似文献
7.
粒子群优化算法的惯性权值递减策略研究 总被引:75,自引:0,他引:75
为了有效地控制粒子群优化算法的全局搜索和局部搜索,基于递减惯性权值的基本思想,在现有的线性递减权值策略的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的权值递减策略,并采用Sphere、Rosenbrock、Griewank和Rastrigrin这4个标准测试函数测试这些策略对算法的影响.试验结果表明,对于多数连续优化问题,在初始权值和最终权值相同的情况下,凹函数递减策略优于线性策略,而线性策略优于凸函数策略,凹函数递减策略能够在不影响收敛精度的情况下较大幅度地提高粒子群算法的收敛速度. 相似文献
8.
杜玉平 《甘肃联合大学学报(自然科学版)》2012,(3):77-80
为提高粒子群算法的寻优速度和精度,提出了一种改进的粒子群算法,新算法是在标准粒子群算法的基础上对个体极值作变异操作.通过三个基准函数的测试,结果表明新算法在收敛速度、收敛精度和全局寻优能力方面均明显优于其它几种粒子群算法. 相似文献
9.
基于变异策略的粒子群算法 总被引:1,自引:0,他引:1
在研究粒子群算法的特点之后,将变异因子融入到粒子群算法之中,提出了一种带有变异策略的粒子群算法(MPSO).该变异因子可以提高算法对解空间的开发能力,从而降低了粒子群算法陷入局部最优的可能性.实验结果表明,经过对4个无约束问题、1个高维线性约束问题以及1个实际应用问题的测试,带有变异策略的粒子群算法可以成功地解决高维无约束问题和带有线性约束的高维问题.实验结果也表明,MPSO算法具有很强的收敛性和稳定性,是一种很有前途的优化算法. 相似文献
10.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高. 相似文献
11.
12.
13.
为了克服粒子群算法的早熟收敛问题和易陷入局部最优问题,本文提出了一种新的基于双子群的改进粒子群优化算法,通过2组搜索方向相反的主、辅子群之间的相互协同,扩大搜索范围,并借鉴杂交机制,使搜索速度更快,收敛精度更高。再采用自适应惯性权重的粒子群算法,根据种群的进化状态来动态调整惯性权重。 相似文献
14.
基于混合粒子群优化算法的机组负荷最优调度 总被引:1,自引:0,他引:1
粒子群优化(too)算法是一种现代启发式算法,提出一种基于混合粒子群优化算法的机组负荷的调度方法,该方法考虑了机组的经济性和安全可靠性.优化了机组的调度运行方式. 相似文献
15.
基于粒子群和人工蜂群算法的混合优化算法 总被引:1,自引:0,他引:1
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。 相似文献
16.
针对粒子群优化算法中出现的收敛早熟和不收敛的问题,提出了一种基于自然选择和惯性权值非线性递减的改进粒子群算法,在算法迭代过程中,粒子边界速度采用最大速度非线性递减变化策略来限制,惯性权值非线性递减变化用于平衡种群粒子前期全局搜索与后期局部寻优的能力;为使种群在进化过程中保持多样性,在标准粒子群算法中引用二阶振荡策略使种... 相似文献
17.
带时间窗车辆路径问题的混合粒子群算法 总被引:7,自引:1,他引:7
将粒子群优化算法与模拟退火算法结合,提出了一种求解车辆路径问题的混合粒子群算法.实例计算及与遗传算法比较的结果表明:应用混合粒子群算法可以快速地求得带时间窗车辆路径问题的优化解;该算法是一种求解离散组合优化问题的有效方法. 相似文献
18.
一种动态非线性改变惯性权的自适应粒子群优化算法 总被引:1,自引:0,他引:1
惯性权值线性递减(LDI)的粒子群算法不能很好地反映粒子搜索过程的复杂非线性行为,收敛速度和收敛精度仍不够理想。对此,提出一种动态非线性改变惯性权(DNI)的自适应粒子群算法。在该算法中通过引入非线性指数函数来描述惯性权值在进化过程中的动态变化特性,并通过数值实验确定了非线性函数关键控制参数的合适取值范围。通过典型测试函数验证算法的性能,并与文献报道的已有结果比较。实验表明:对单峰值函数优化问题,DNI自适应粒子群算法收敛速度明显优于LDI算法;对多峰值函数优化问题,DNI算法跳出局部最优的能力及收敛精度也好于LDI算法。 相似文献
19.
通过对标准粒子群优化算法中惯性权重的分析和对耗散理论的研究,提出了一种惯性权重正弦调整的耗散粒子群优化算法(S-DPSO),并对该算法进行了深入的分析和研究.通过对4个典型函数的仿真测试,试验结果表明S-DPSO在收敛速度和全局收敛性方面都比标准粒子群优化算法、随机惯性权重粒子群优化算法、惯性权重正弦调整粒子群优化算法、耗散粒子群优化算法和随机惯性权重耗散粒子群优化算法有明显改进.理论分析和仿真试验验证了S-DPSO的正确性和有效性. 相似文献
20.
罗飞;林小兰;许玉格;李慧娟 《华南理工大学学报(自然科学版)》2008,36(8)
粒子群算法(Particle Swarm Optimization, PSO)具有模型简单,收敛的快速性和在连续系统中应用的优势,但存在着进化的后期收敛速度变慢,易陷入局部值的缺点。人工免疫 (Artificial Immune, AI) 优化算法利用人工免疫系统抗体多样性的机理和克隆选择算子搜索抗体群,具有很强的全局寻优能力,可以弥补粒子群算法的缺点。结合这两种算法的优缺点,提出了免疫粒子群 (Immune PSO, IPSO) 混合优化算法,并应用于混合电梯群控系统中进行派梯优化,取得了良好的效果。与人工免疫优化算法、粒子群算法分别进行比较,显示出免疫粒子群混合优化算法在优化派梯方案的优越性。文章的结尾展望了今后工作的研究重点和发展趋势。 相似文献