首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
针对露天矿用潜孔钻机钻架在高寒大风地区工作时受冲击载荷影响易出现大幅摆动的问题,采用数值仿真方法,对某一现场使用钻机进行不同风向载荷与冲击载荷同时作用下钻架结构动力学分析,得到结构幅频响应曲线及动应力响应规律.结果表明:有风载荷作用下钻架结构的最大摆幅与最大动应力值显著提高,结构安全系数降低;幅频响应及动应力响应规律与结构动态性能关系密切;风载荷作用方向不同时钻架最大动应力作用位置不变,但最大动应力值和振幅值有明显不同;风载荷作用方向与钻机车身平行时,钻架的动应力及摆动位移最大,结构安全系数最低.  相似文献   

2.
为研究地铁行车载荷作用下隧道周围土体孔压特性,基于正交试验设计进行了多组动三轴试验,计算并分析了累积孔压受围压、动应力幅值、频率以及振动次数因素的影响率.结果表明:含水量越大的土体,地铁行车载荷产生的累积孔压越高;累积孔压受单因素影响较大,影响率最大是动应力幅值,其次是围压、频率,最小是振动次数;围压与振动次数、频率与振动次数间的耦合作用对累积孔压影响可忽略,其他因素耦合作用均不可忽略;在一定条件下,耦合作用影响效果比单因素显著,如动应力幅值与围压耦合作用要比单因素振动次数对累积孔压的影响要大.  相似文献   

3.
以某X型超高层建筑为工程背景,研究了该超高层建筑顺风向、横风向以及扭转风荷载系数沿高度方向的分布规律.以质量和刚度相同、动力特性相近为原则使用简化的自由度缩聚模型代替结构精确有限元模型,计算结果显示结构位移与加速度响应均以一阶模态响应为主,该模型代替精确有限元模型能够满足工程计算需要.对质量中心和刚度中心重合的结构,扭转加速度响应在合加速度响应中占有的比例较小,结构在3个方向上振动的耦合程度不高.提出的合成位移投影方法计算出的沿坐标轴方向的风振系数能够保证X和Y方向最大位移与合成位移最大值的同步性,并考虑了横风向风振的影响略大于顺风向风振系数.  相似文献   

4.
分析了肋环型单层曲板网壳结构的风荷载和风振响应,并对采用不同方法计算结构等效静风荷载的精度进行了比较.风洞试验结果表明:肋环型单层曲板网壳结构屋面主要受负风压作用;但在90°风向角下,由于体育馆受前方入口建筑的影响,屋盖边缘局部出现正风压.风振响应分析结果表明:有多阶振型参与结构的风致振动,高阶模态影响不可忽略;为保证结构表面所有节点位移准确,结构的模态耦合项不能忽略.但如果只保证较大位移处的准确性,忽略模态耦合项的SRSS方法也是可取的.利用LRC惯性力法和改进LRC方法计算肋环型单层曲板网壳结构的等效静风荷载,可以保证所有风向角下节点的最大位移等效,但不能保证所有节点的位移等效.  相似文献   

5.
为研究大跨度连廊结构在风载荷作用下的影响,应用ADINA有限元分析软件对大跨度连廊结构进行流体—结构耦合的数值模拟计算不同风速大小、不同风向角作用下分析结构,流场的位移应力.得到结构体沿高度变化的位移,结构表面应力分布及流场应力分布和速度矢量.结果表明:在风载荷作用下,结构位移最大出现在结构中心以下位置.结构表面压应力分布状态与载荷大小无关,结构迎风面压力为正值,背面压力为负.软件的分析有利于更好地认识到流固耦合作用对结构体的影响.  相似文献   

6.
冲击载荷作用下超空泡水下航行体的结构响应   总被引:8,自引:0,他引:8  
基于超空泡体运动特点,采用理论分析方法近似确定了作用在超空泡水下航行体上的冲击载荷及其在航行体尾部的分布,并用有限元法研究了冲击载荷作用下超空泡水下航行体的结构响应.数值计算结果表明:冲击载倚作用方向引起的响应非常大.达到了300 m/s<'2>的量级,并且引起了另外2个方向的响应.在超空泡体运动方向,其轴向频率为23 Hz,27 Hz,46 Hz,63 Hz和72 Hz时响应幅值最大,对结构的影响最明显.超空泡体垂向振动频率为24 Hz以内时引起的响应最为显著,且随着频率的升高响应幅值有减小的趋势.得到的结果对超空泡体结构设计具有指导意义.  相似文献   

7.
膜结构作为一种风敏感结构,其风致振动需考虑流固耦合效应.建立膜结构风振响应的数值模拟平台,该平台调用已有的结构计算模块ANSYS以及流场求解模块CFX,并开发了大位移边界下的动态网格更新以及流固耦合边界的自匹配功能,从而实现了膜结构风振响应的数值模拟计算.利用该平台对工程应用较为广泛的典型张拉膜结构进行了初步风致振动响应研究.数值模拟结果显示:张拉膜结构的风振是由结构多个模态的耦合叠加所组成,其风振响应体现了结构较强的几何非线性特征;来流的风速大小、风向角以及张拉膜的预张力、矢跨比等因素都会对结构的风振响应产生一定的影响.  相似文献   

8.
针对国内高速列车的简化结构模型,采用Virtual Lab Acoustics专业声学求解器,建立了车厢结构声场耦合分析模型,对车厢结构模态、室内空腔模态及室内声振耦合系统进行了模型化分析.理论分析结果表明:在21.24 Hz和35.53 Hz处,车身结构模态的振动频率和空腔模态的振动频率接近,产生共振;在同一水平面上场点声压呈现强弱交替分布,随着频率的增加,车厢内部同一平面上沿横向和纵向的干涉条纹增加;不同测点声压级差异明显,噪声空间分布不均;在20~38Hz频段,声压级处于80 dB以上.  相似文献   

9.
对于复合钢板油底壳进行了自由模态、约束模态以及流固耦合下湿模态的计算与试验,较高的一致性表明耦合模型是合理的.模态对比结果说明当油底壳盛油后,模态振型出现了变化,且整体模态频率降低.使用最小二乘法拟合了盛油前后油底壳的瑞利阻尼比例系数.结果表明润滑油对于复合钢板油底壳的阻尼影响不大.采用多体动力学计算了耦合与非耦合油底壳的振动响应,在整体幅值和变化趋势上与试验值较接近.耦合模型的振动响应在整体上略低于非耦合模型,但500 Hz前的振动峰值更突出,尤其在330 Hz附近.耦合模型在峰值频率和趋势上与试验值吻合得更好.进一步通过边界元法计算了两种油底壳模型的辐射噪声,结果显示考虑耦合后油底壳辐射声功率在3 000 Hz内显著下降,仅在333 Hz处有较高的峰值.   相似文献   

10.
自然风与列车风的耦合气动作用是铁路风屏障产生弯曲、扭转等变形的主要原因。建立了列车-风屏障耦合的三维气动仿真模型,对风屏障在突变风与列车风耦合作用下压力分布规律进行了分析。建立了风屏障固体结构分析模型,对风屏障进行了模态分析,采用流固耦合的方法分析了风屏障在不同工况下的应力及变形量,据此对风屏障进行了强度校核。结果表明:风屏障自振频率最小为6.11Hz,风屏障自振频率与列车风的振动频率相差较多,不会产生共振现象。在突变风与列车风耦合下,突变风的作用效果对风屏障的位移以及应力变化起决定性作用。在1.59s时,风屏障在突变风与列车风耦合作用下产生最大位移,其中最大负位移达到1.42mm,最大正位移达到0.605mm。H型钢立柱产生最大的Mises应力,达到83.79Mpa,比列车风单独作用时增加了152.8%。可见突变风与列车风耦合会加剧风屏障的动力响应。  相似文献   

11.
大跨度桥梁对风荷载敏感性强,静风变形和脉动风荷载下的随机振动响应比较复杂,抖振响应分析就成为了设计的关键问题.分别应用频域和时域的分析方法,对大桥进行了横风向抖振响应分析,进而对比两种方法下抖振响应的位移均方差和最大值.计算结果表明:1)对于均方差求解两种计算方法有很好的一致性,对于最大值的求解两种计算方法有一定的误差;2)抖振位移主要由主梁各方向一阶振动模态控制,高阶模态的参与效应很小.  相似文献   

12.
为了解决载荷作用下夹层圆板非线性振动的大挠度方程求解问题,采用基于空间模态假设和变分法,导出时间模态的控制方程.采用伽辽金法推导出静挠度和动挠度耦合作用下夹层圆板的非线性动力方程,从而求解出解的时间模态的渐进表达式.最后采用Lindestedt-Poincare摄动法求解中心点附近的周期解并绘制出幅频特性曲线.结果表明:当横向激扰使夹层圆板产生较大幅度的受迫振动的同时,由于载荷作用下变形的存在,其产生的附加动挠度就会与变形产生非线性耦合现象,因而由此产生的变形必将影响夹层圆板的动力学特性.该成果对非线性振动问题的研究具有一定的参考价值和指导意义.  相似文献   

13.
基于数值方法分析了铝合金薄板在共振和非共振状态下的动态响应,结合Dirlik疲劳寿命估算方法,确定振动应力是影响结构振动疲劳寿命的主要因素.利用数字图像相关技术,通过随机振动试验验证了数值计算动应力的准确性,研究了结构在多模态随机载荷激励下的振动特性,发现高阶模态载荷会影响结构振动疲劳损伤,引起结构振动疲劳寿命的急剧降低,并分析了产生这一现象的原因.  相似文献   

14.
风载对某传输塔影响的研究   总被引:1,自引:1,他引:0  
首先通过MARC软件建立传输塔模型,并对其进行模态分析,求出结构的基本自振周期;然后,利用MARC软件求出传输塔在只承受自重和电缆载荷情况下的应力和位移,并找出危险点;最后,将传输塔分层,根据风载荷的计算机理和有限元理论,用MARC软件对传输塔在各级风载荷作用下的情况进行静力分析.根据应力、变形情况观察危险点,并将在各级风载作用下的结果与无风载荷时进行比较,得出结论.  相似文献   

15.
以苏通长江公路大桥为工程背景,针对该桥风致振动响应监测系统实测的一次下击暴流风与桥梁结构振动加速度响应实测数据,对该桥在一次雷暴天气下风速、风向及主梁振动响应进行研究.首先,对桥位处下击暴流实测风速、风向数据进行分析,获得了该桥主梁跨中、桥塔塔顶处下击暴流风的时变平均风与脉动风特性;然后,对下击暴流作用下主梁风致振动加速度响应数据进行分析.结果表明:在下击暴流作用下,该桥主梁与塔顶高度处风速发生了明显突变,持续时间约为10~24 min;主跨跨中主梁外侧边缘处下游、上游侧最大瞬时风速分别为32.4 m/s和27.3 m/s,南、北桥塔塔顶高度处最大瞬时风速分别达60.5 m/s和62.9 m/s.主梁高度处30 s时距湍流度约0.048~0.32,10 min时距湍流度约0.43~0.51;主梁下游与北塔处折减脉动风速符合高斯特性,其功率谱与Burlando等学者的实测结果吻合较好.主梁跨中附近(即NJ26D、NJ32D拉索锚固处)发生了较为明显的短时竖向与横桥向振动,相应加速度响应幅值分别为0.25 m/s2和0.10 m/s2,对应位移幅值分别为0.12 m与0.03 m;主梁竖向振动响应明显大于横桥向振动响应,主梁竖向振动主频为0.183 Hz,与主梁全桥一阶正对称竖弯振型频率0.174 Hz接近;横桥向振动主频为0.117 Hz,与主梁全桥一阶正对称侧弯振型频率0.0975 Hz接近.  相似文献   

16.
王志强  雷震宇 《科学技术与工程》2020,20(29):12118-12124
为分析地铁直线段钢轨波磨的成因及发展特性,基于轨道结构有限元模型和车辆-轨道耦合动力学模型,运用模态分析和动力分析对钢轨波磨的产生和发展进行研究。结果表明:(1)实测波磨的线路条件和通过频率范围与Pinned-Pinned共振导致的响轨波磨接近,初步认为该区段发生的波磨可能为响轨波磨;(2)轨道结构模态分析发现,513.7Hz处的振动模态为轨道结构的横向Pinned-Pinned共振模态,1050.0Hz处的振动模态为轨道结构的垂向Pinned-Pinned共振模态;车辆-轨道耦合模型动力分析发现,钢轨垂向振动加速度级在中心频率500Hz和1000Hz处幅值较高,分别为69.7dB和70.1dB,且上述中心频率所对应的三分之一倍频程带宽为轨道结构发生Pinned-Pinned共振的频率范围,因此分析认为该线路上的钢轨波磨为轨道结构Pinned-Pinned共振所致的响轨波磨;(3)不同轨枕间距和运营速度下的钢轨垂向振动加速度级变化趋势基本一致,且中心频率500Hz和1000Hz处的钢轨垂向振动加速度级幅值较高。随着轨枕间距和运营速度的变化,500Hz和1000Hz处的钢轨垂向振动加速度级变化趋势相同;通过改变轨枕间距和运营速度,可以使得钢轨垂向振动加速度级发生明显变化,说明适当的轨枕间距(700mm左右)和运营速度(80km/h左右)能够有效的控制响轨波磨的产生和发展。  相似文献   

17.
搭建了整备状态下的某高速列车动力车厢有限元模型,包括白车身、内饰件和牵引传动系统.提出了多物理场激励耦合作用下的高速列车车内结构辐射噪声分析方案,分别采用刚性多体动力学、边界元法和大涡模拟获取了二系悬挂力、轨道噪声和车体表面压力脉动,与车体模态耦合后得到车体结构的振动响应.完成了时速350,km/h下的列车搭载试验和车体结构响应计算,在地板上随机选取了一个振动测点,仿真与试验得到的振动速度级曲线趋势和幅值具有较高的一致性,验证了仿真模型与多物理场耦合激励的精度.最后采用耦合边界元分析了耦合激励下的车内结构辐射噪声.  相似文献   

18.
针对热镀锌线沉没辊装置出现剧烈振动的问题,基于湿模态的结构非完全液固耦合方法,数值模拟了装置在锌液中的振动模态,分析各阶振型及固有频率,并进行现场振动实验.锌液中沉没辊的局部振型改变轴承的装配关系,而在实测信号的时域波形中出现削波现象,表明锌液中滑动轴承存在碰摩;幅值谱中波峰对应的频率为45.05 Hz,与湿模态的第4阶固有频率接近且振型相似,表明实验中的装置主要以第4阶固有振动为主;液固耦合的非线性振动引起倍频振动;锌液流场的持续作用是导致幅值谱中波峰两侧出现边频带的主要原因.理论及数值分析与实验研究有显著的关联性,结构非完全液固耦合方法能有效应用于工程实践.  相似文献   

19.
基于110 kV高压输电塔项目,建立了输电塔线体系有限元模型,并验证了输电线有限元模型的准确性.对单塔及塔线体系的动力特性进行分析,分析表明,塔线体系平面外振动耦合效应大于平面内.以谐波叠加法对输电塔线体系风载荷时程进行了数值模拟,对单塔和塔线体系的风振响应进行了时域分析.结果表明,输电塔和输电线风振响应均以一阶振型为主.塔线体系塔顶位移响应均方根值在0°风向角下是单塔的1. 73倍,而90°风向角情况下是单塔的4. 95倍.90°风向角情况下塔线体系塔顶位移背景响应分量增加较大,塔线耦合效应大于0°风向角情况.输电塔和输电线的平面内耦合效应通过输电线端部动张力差实现.输电塔塔身第2层主材所受应力大于其他各层,是倒塌破坏的危险位置.  相似文献   

20.
利用有限元分析软件对木龙河斜拉索跨越结构在风载荷作用下的动静态力学特性进行了分析.静态分析表明,风力小于3级时桥的最大位移和最大应力随风力变化不大.风力大于3级时两者随风力的增大而显著增加.通过模态分析得到了跨越结构的前10阶振型和频率,并分析了8级动态风载下管桥中部和端部两个关键节点的位移和拉应力的时间历程响应及某一时刻跨越结构的应力、位移分布情况,最后得到了动态风载荷下风力与最大应力和最大位移之间的关系,得出的结论与静态一致,但在大于3级的风力情况下,动态风载引起的最大位移和最大应力比静态风载约大2倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号