首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
此文用密度泛函理论的赝势平面波方法的第一性原理研究了过渡金属化合物ZrB_3与NbB_3(m-AlB_2、OsB_3和MoB_3结构)在高压下的力学性质和电子结构特点,获得了在常压下,m-AlB_2是最稳定的结构,当压强升高到40GPa时发生相变,高压下最稳定是OsB_3结构.m-AlB_2-NbB_3具有最大的剪切模量204GPa,最高的德拜温度921K和最大的硬度值27.3GPa,属于潜在的超不可压缩材料.MoB_3-NbB_3、OsB_3-NbB_3和m-AlB_2-ZrB_3的硬度值分别达到了24.9GPa、22.6GPa和19.8GPa.它们的电子态主要是由M-4d态和B-2p态杂化叠加形成的,在费米能级处取值均不为零,故这些化合物都具有金属性等有益结果.  相似文献   

2.
New high-pressure phases of lithium   总被引:3,自引:0,他引:3  
Hanfland M  Syassen K  Christensen NE  Novikov DL 《Nature》2000,408(6809):174-178
Lithium is considered a 'simple' metal because, under ordinary conditions of pressure and temperature, the motion of conduction electrons is only weakly perturbed by interactions with the cubic lattice of atomic cores. It was recently predicted that at pressures below 100 GPa, dense Li may undergo several structural transitions, possibly leading to a 'paired-atom' phase with low symmetry and near-insulating properties. Here we report synchrotron X-ray diffraction measurements that confirm that Li undergoes pronounced structural changes under pressure. Near 39 GPa, the element transforms from a high-pressure face-centred-cubic phase, through an intermediate rhombohedral modification, to a cubic polymorph with 16 atoms per unit cell. This cubic phase has not been observed previously in any element; unusually, its calculated electronic density of states exhibits a pronounced semimetal-like minimum near the Fermi energy. We present total-energy calculations that provide theoretical support for the observed phase transition sequence. Our calculations indicate a large stability range of the 16-atom cubic phase relative to various other crystal structures tested here.  相似文献   

3.
First-order structural phase transitions are common in crystalline solids, whereas first-order liquid-liquid phase transitions (that is, transitions between two distinct liquid forms with different density and entropy) are exceedingly rare in pure substances. But recent theoretical and experimental studies have shown evidence for such a transition in several materials, including supercooled water and liquid carbon. Here we report an in situ X-ray diffraction observation of a liquid-liquid transition in phosphorus, involving an abrupt, pressure-induced structural change between two distinct liquid forms. In addition to a known form of liquid phosphorus--a molecular liquid comprising tetrahedral P4 molecules--we have found a polymeric form at pressures above 1 GPa. Changing the pressure results in a reversible transformation from the low-pressure molecular form into the high-pressure polymeric form. The transformation is sharp and rapid, occurring within a few minutes over a pressure range of less than 0.02 GPa. During the transformation, the two forms of liquid coexist. These features are strongly suggestive of a first-order liquid-liquid phase transition.  相似文献   

4.
W A Crichton  M Mezouar  T Grande  S St?len  A Grzechnik 《Nature》2001,414(6864):622-625
Studies of liquids with tetrahedral coordination, particularly during compression or quenching, have indicated the existence of distinct phases in the liquid state, distinguishable by density and local structure. In systems that exhibit critical phenomena in the supercooled state, anomalous behaviour of the compressibility is also anticipated above the critical point, as revealed by simulations of water. Liquid GeSe(2) is a potentially attractive system for studying both types of phenomena, given its two-dimensional tetrahedral structure and anomalous physical properties (including a density minimum near its melting point). Here we report in situ X-ray diffraction measurements of solid and liquid GeSe(2) at high temperature and high pressure, revealing that the structure of the liquid is sensitive to pressure and that anomalous compressibility is expected. During compression of liquid GeSe(2), the connectivity of the liquid changes from two- to three-dimensional, leading to a breakdown of the intermediate-range order. The gradual change in structure above the melting line may develop to a first-order liquid-liquid transition in the supercooled regime.  相似文献   

5.
Superconductivity in the non-magnetic state of iron under pressure.   总被引:1,自引:0,他引:1  
K Shimizu  T Kimura  S Furomoto  K Takeda  K Kontani  Y Onuki  K Amaya 《Nature》2001,412(6844):316-318
Ferromagnetism and superconductivity are thought to compete in conventional superconductors, although in principle it is possible for any metal to become a superconductor in its non-magnetic state at a sufficiently low temperature. At pressures above 10 GPa, iron is known to transform to a non-magnetic structure and the possibility of superconductivity in this state has been predicted. Here we report that iron does indeed become superconducting at temperatures below 2 K at pressures between 15 and 30 GPa. The transition to the superconducting state is confirmed by both a drop in resistivity and observation of the Meissner effect.  相似文献   

6.
S K Deb  M Wilding  M Somayazulu  P F McMillan 《Nature》2001,414(6863):528-530
Crystalline and amorphous forms of silicon are the principal materials used for solid-state electronics and photovoltaics technologies. Silicon is therefore a well-studied material, although new structures and properties are still being discovered. Compression of bulk silicon, which is tetrahedrally coordinated at atmospheric pressure, results in a transition to octahedrally coordinated metallic phases. In compressed nanocrystalline Si particles, the initial diamond structure persists to higher pressure than for bulk material, before transforming to high-density crystals. Here we report compression experiments on films of porous Si, which contains nanometre-sized domains of diamond-structured material. At pressures larger than 10 GPa we observed pressure-induced amorphization. Furthermore, we find from Raman spectroscopy measurements that the high-density amorphous form obtained by this process transforms to low-density amorphous silicon upon decompression. This amorphous-amorphous transition is remarkably similar to that reported previously for water, which suggests an underlying transition between a high-density and a low-density liquid phase in supercooled Si (refs 10, 14, 15). The Si melting temperature decreases with increasing pressure, and the crystalline semiconductor melts to a metallic liquid with average coordination approximately 5 (ref. 16).  相似文献   

7.
General arguments suggest that first-order phase transitions become less sharp in the presence of weak disorder, while extensive disorder can transform them into second-order transitions; but the atomic level details of this process are not clear. The vortex lattice in superconductors provides a unique system in which to study the first-order transition on an inter-particle scale, as well as over a wide range of particle densities. Here we use a differential magneto-optical technique to obtain direct experimental visualization of the melting process in a disordered superconductor. The images reveal complex behaviour in nucleation, pattern formation, and solid-liquid interface coarsening and pinning. Although the local melting is found to be first-order, a global rounding of the transition is observed; this results from a disorder-induced broad distribution of local melting temperatures, at scales down to the mesoscopic level. We also resolve local hysteretic supercooling of microscopic liquid domains, a non-equilibrium process that occurs only at selected sites where the disorder-modified melting temperature has a local maximum. By revealing the nucleation process, we are able to experimentally evaluate the solid-liquid surface tension, which we find to be extremely small.  相似文献   

8.
Eremets MI  Hemley RJ  Mao Hk  Gregoryanz E 《Nature》2001,411(6834):170-174
The triple bond of diatomic nitrogen has among the greatest binding energies of any molecule. At low temperatures and pressures, nitrogen forms a molecular crystal in which these strong bonds co-exist with weak van der Waals interactions between molecules, producing an insulator with a large band gap. As the pressure is raised on molecular crystals, intermolecular interactions increase and the molecules eventually dissociate to form monoatomic metallic solids, as was first predicted for hydrogen. Theory predicts that, in a pressure range between 50 and 94 GPa, diatomic nitrogen can be transformed into a non-molecular framework or polymeric structure with potential use as a high-energy-density material. Here we show that the non-molecular phase of nitrogen is semiconducting up to at least 240 GPa, at which pressure the energy gap has decreased to 0.4 eV. At 300 K, this transition from insulating to semiconducting behaviour starts at a pressure of approximately 140 GPa, but shifts to much higher pressure with decreasing temperature. The transition also exhibits remarkably large hysteresis with an equilibrium transition estimated to be near 100 GPa. Moreover, we have succeeded in recovering the non-molecular phase of nitrogen at ambient pressure (at temperatures below 100 K), which could be of importance for practical use.  相似文献   

9.
利用基于密度泛函的第一性原理, 计算SrCl2压致结构转变的压力. 结果表明: SrCl2在2.1 GPa处发生第一个压致结构转变, 由萤石结构(空间群Fm3m)转变为正交结构(空间群Pnma); 在65.7 GPa处发生第二个压致结构转变, 由正交结构转变为六角结构(空间群P63/mmc); 两个压致结构转变均发生体积突变, 分别为4.7%和0.2%, 均属于一级相变.  相似文献   

10.
Osterloh A  Amico L  Falci G  Fazio R 《Nature》2002,416(6881):608-610
Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor-insulator transition in two-dimensional systems. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication. The role of entanglement at a phase transition is not captured by statistical mechanics-a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.  相似文献   

11.
难熔金属的高压熔化曲线在动-静高压实验之间存在巨大争议,而在发生冲击熔化之前是否存在固-固相变是目前的研究热点问题.本文以3种典型难熔金属钽、钼、钨为例,通过第一性原理晶格动力学方法,计算了钽、钼、钨的声子色散曲线.采用准谐近似的方法,获得了Hugoniot状态方程以及Hugoniot声速.对于钽和钨的声速计算表明,其基态体心立方结构在高压下一直保持其稳定性;而钼的晶格动力学计算表明其基态结构的稳定性在高压下消失,而钼的Hugoniot声速在175–275GPa区域内发生了拐折,这一结果证实了冲击波实验中对于钼的声速测量的结果:在210GPa压力附近声速发生间断.  相似文献   

12.
采用基于密度泛函理论的从头算平面波超软贋势方法研究了压力对NaN_3结构稳定性、力学性能以及电子结构的影响.对能量和力学参量的计算结果表明,R-3m结构是NaN_3在零压下的稳定性结构.随着压力的增加,在5 GPa的压力范围内NaN_3会发生从R-3m结构到C2/m结构的结构相变,而C2/m结构的NaN_3在压力超过20 GPa以后也不能够保持稳定.该结果与实验研究结果间取得了很好的一致.此外,对电子结构的研究表明,常压下两种结构NaN_3都表现出了绝缘体的性质.随着压力的增加,C2/m结构NaN_3的价带和导带宽度都略有增加,而带隙宽度略有减小.  相似文献   

13.
Kagawa F  Miyagawa K  Kanoda K 《Nature》2005,436(7050):534-537
Changing the interactions between particles in an ensemble--by varying the temperature or pressure, for example--can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of ingredients, which include atoms, molecules, electrons and their spins, the collective behaviour can be grouped into several families (called 'universality classes') represented by canonical spin models. One kind of transition, the Mott transition, occurs when the repulsive Coulomb interaction between electrons is increased, causing wave-like electrons to behave as particles. In two dimensions, the attractive behaviour responsible for the superconductivity in high-transition temperature copper oxide and organic compounds appears near the Mott transition, but the universality class to which two-dimensional, repulsive electronic systems belongs remains unknown. Here we present an observation of the critical phenomena at the pressure-induced Mott transition in a quasi-two-dimensional organic conductor using conductance measurements as a probe. We find that the Mott transition in two dimensions is not consistent with known universality classes, as the observed collective behaviour has previously not been seen. This peculiarity must be involved in any emergent behaviour near the Mott transition in two dimensions.  相似文献   

14.
Yue Y  Angell CA 《Nature》2004,427(6976):717-720
The formation of glasses is normal for substances that remain liquid over a wide temperature range (the 'good glassformers') and can be induced for most liquids if cooling is fast enough to bypass crystallization. During reheating but still below the melting point, good glassformers exhibit glass transitions as they abruptly transform into supercooled liquids, whereas other substances transform directly from the glassy to the crystalline state. Whether water exhibits a glass transition before crystallization has been much debated over five decades. For the last 20 years, the existence of a glass transition at 136 K (ref. 3) has been widely accepted, but the transition exhibits qualities difficult to reconcile with our current knowledge of glass transitions. Here we report detailed calorimetric characterizations of hyperquenched inorganic glasses that, when heated, do not crystallize before reaching their glass transition temperatures. We compare our results to the behaviour of glassy water and find that small endothermic effects, such as the one attributed to the glass transition of water, are only a 'shadow' of the real glass transition occurring at higher temperatures, thus substantiating the conclusion that the glass transition of water cannot be probed directly.  相似文献   

15.
Koga K  Tanaka H  Zeng XC 《Nature》2000,408(6812):564-567
Supercooled water and amorphous ice have a rich metastable phase behaviour. In addition to transitions between high- and low-density amorphous solids, and between high- and low-density liquids, a fragile-to-strong liquid transition has recently been proposed, and supported by evidence from the behaviour of deeply supercooled bilayer water confined in hydrophilic slit pores. Here we report evidence from molecular dynamics simulations for another type of first-order phase transition--a liquid-to-bilayer amorphous transition--above the freezing temperature of bulk water at atmospheric pressure. This transition occurs only when water is confined in a hydrophobic slit pore with a width of less than one nanometre. On cooling, the confined water, which has an imperfect random hydrogen-bonded network, transforms into a bilayer amorphous phase with a perfect network (owing to the formation of various hydrogen-bonded polygons) but no long-range order. The transition shares some characteristics with those observed in tetrahedrally coordinated substances such as liquid silicon, liquid carbon and liquid phosphorus.  相似文献   

16.
ZnO岩盐结构熔化特性的分子动力学模拟   总被引:2,自引:0,他引:2  
利用分子动力学方法和经验势模型对岩盐结构ZnO高压下的熔化特性进行了研究.对ZnO闪锌矿结构常压下的熔化进行模拟,发现存在过热熔化现象,通过与实验比较得到其过热48%的结论,然后利用该结论修正得到了ZnO岩盐结构0-50GPa的高压熔化相图.其中岩盐结构ZnO高压熔化曲线在压力低于7GPa时和由Lindemann熔化方程得到的结果符合很好.  相似文献   

17.
Takahashi H  Igawa K  Arii K  Kamihara Y  Hirano M  Hosono H 《Nature》2008,453(7193):376-378
The iron- and nickel-based layered compounds LaOFeP (refs 1, 2) and LaONiP (ref. 3) have recently been reported to exhibit low-temperature superconducting phases with transition temperatures T(c) of 3 and 5 K, respectively. Furthermore, a large increase in the midpoint T(c) of up to approximately 26 K has been realized in the isocrystalline compound LaOFeAs on doping of fluoride ions at the O2- sites (LaO(1-x)F(x)FeAs). Experimental observations and theoretical studies suggest that these transitions are related to a magnetic instability, as is the case for most superconductors based on transition metals. In the copper-based high-temperature superconductors, as well as in LaOFeAs, an increase in T(c) is often observed as a result of carrier doping in the two-dimensional electronic structure through ion substitution in the surrounding insulating layers, suggesting that the application of external pressure should further increase T(c) by enhancing charge transfer between the insulating and conducting layers. The effects of pressure on these iron oxypnictide superconductors may be more prominent than those in the copper-based systems, because the As ion has a greater electronic polarizability, owing to the covalency of the Fe-As chemical bond, and, thus, is more compressible than the divalent O2- ion. Here we report that increasing the pressure causes a steep increase in the onset T(c) of F-doped LaOFeAs, to a maximum of approximately 43 K at approximately 4 GPa. With the exception of the copper-based high-T(c) superconductors, this is the highest T(c) reported to date. The present result, together with the great freedom available in selecting the constituents of isocrystalline materials with the general formula LnOTMPn (Ln, Y or rare-earth metal; TM, transition metal; Pn, group-V, 'pnicogen', element), indicates that the layered iron oxypnictides are promising as a new material platform for further exploration of high-temperature superconductivity.  相似文献   

18.
In situ pressure-induced Raman spectral changes of 1-octyl-3-methyl imidazolium hexafluorophosphate ([OMIM][PF6]) have been investigated under the pressure up to 5.86 GPa at room temperature. The results indicated that [OMIM][PF6] experienced a phase transition at about 4.12 GPa during compression, and it was thought as a phase transition of liquid to a superpressurized glass. Upon decompression, from the obvious change of Raman spectra of [OMIM][PF6] at about 0.48 GPa, it could be inferred that a decompression-induced disorder to order phase transition in [OMIM][PF6] occurred. The phase behavior of [OMIM] [PF6] at low temperature under atmospheric pressure was also investigated in detail. The result showed that Raman spectra of [OMIM][PF6] varied slightly and no crystallization occurred upon cooling. These facts suggested that a disorder to order phase transition was induced by decompression in [OMIM][PF6], and [OMIM][PF6] served as a superpressurized glass under the pressure above 4.12 GPa, which was similar to the glassy state at low temperature.  相似文献   

19.
Loubeyre P  Occelli F  LeToullec R 《Nature》2002,416(6881):613-617
The quest for metallic hydrogen at high pressures represents a longstanding problem in condensed matter physics. Recent calculations have predicted that solid hydrogen should become a molecular metal at pressures above 300 GPa, before transforming into an alkali metal; but the strong quantum nature of the problem makes the predictions difficult. Over a decade ago, an optical study of hydrogen was made using a diamond anvil cell to reach 250 GPa. However, despite many subsequent efforts, quantitative studies at higher pressures have proved difficult and their conclusions controversial. Here we report optical measurements of solid hydrogen up to a pressure of 320 GPa at 100 K. The vibron signature of the H2 molecule persists to at least 316 GPa; no structural changes are detected above 160 GPa, and solid hydrogen is observed to turn completely opaque at 320 GPa. We measure the absorption edge of hydrogen above 300 GPa, observing features characteristic of a direct electronic bandgap. This is at odds with the most recent theoretical calculations that predict much larger direct transition energies and the closure of an indirect gap. We predict that metal hydrogen should be observed at about 450 GPa when the direct gap closes.  相似文献   

20.
采用基于密度泛函理论的第一性原理研究方法对LiN3在高压下的结构稳定性和电子结构进行了研究.对结构稳定性的研究表明在60 GPa的压力范围内C2/m结构的LiN3能始终保持稳定,与实验研究结果间取得了很好的一致.此外,对压力下电子结构的分析表明随着压力的增大LiN3的带隙宽度有明显的减小,可能发生从绝缘体到半导体的电子结构的转变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号