首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文证明了积分不等式∫M∑i=1β≠n 1hi^2βj[3-1/p-1 n^1/2)S-na-1/2(n 1)(b-│b│)]*1≥0从而得到如下Pinching定理:若S≤[na 1/2(n 1)(b-│b│)]/(3-1/p-1 n^1/2)则M落在N的一个全测地子流行S^n 1中或S=[na 1/2(n 1)(b-│b│)]/(3-1/p-1 n^1/2)所得积分不等式优于白正国教授的结果而Pinching定理是丘成桐教授相应定理的推广。  相似文献   

2.
研究了拟常曲率黎曼流形中的紧致极小子流形问题,给出了M^n是全测地子流形的截面曲率不等式估计,推广了S.T.au研究的结果,并导出了有关数量曲率和Ricc曲率的结论。  相似文献   

3.
4.
研究拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形. 通过计算子流形第二基本形式模长平方的拉普拉斯, 利用Stokes定理, 得到这类子流形的一个积分不等式. 使得对拟常曲率黎曼流形中紧致子流形的研究由极小子流形和伪脐子流形情形扩展到具有平行平均曲率向量的情形.  相似文献   

5.
6.
研究了拟常曲率黎曼流形中的法联络平坦子流形,将常曲率黎曼流形中B.Y.Chen和M.Okumura关于数量曲率和截面曲率关系之间一个著名不等式推广到环绕空间是拟常曲率黎曼流形的情形,作为应用,简捷地将M.Okumura的两个重要结果推广到这种环绕空间中法联络是平坦的子流形上去。  相似文献   

7.
本文的目的是证明如下的定理:设V~(n+p)是拟常曲率黎曼流形,即V的黎曼曲率张量可表为K_(ABCD)+a(g_(AC)g_(BD)-g_(AD)g_(BC))+b(g_(AC)V_BV_D+g_(BD)V_AV_C-g_(AD)V_(BC)-g_(BC)V_AV_D)(sum from n=(A,B)(g_(AB)V_AV_B=1),若M~n是V~(n+p)的具有平行平均曲率的紧,致无边子流形,则integral from n=M~n({(2-1/p)S~2-[na+(1/2)(b-|b|)(n+1)]S+n(n-1)b~2+nH(anH+S~(3/2)+2|b|S~(1/2))}*1≥0)式中S=const是M~n的第二基本形式的长度之平方,H=const是M~n的中曲率.当M~n是V~(n+p)的极小子流形时(H=0),得到白正国教授[1]中的相应不等式  相似文献   

8.
主要研究了具有平行Ricci曲率的黎曼流形中的极小子流形关于截面曲率的Pinching定理.,推广了局部对称空间中该类子流形的有关结果.  相似文献   

9.
研究n+p维拟常曲率黎曼流形Nn+p中的n维紧致伪脐子流形Mn, 给出一个Simons型积分不等式  相似文献   

10.
得到了一个推广的Mayer定理,利用此定理证明了具有小负Ricci曲率黎曼流形的一个球定理。  相似文献   

11.
研究了拟常曲率黎曼流形中具有平行平均曲率向量的紧致子流形,得到一个积分不等式:∫Mn{(1 (1)/(2)sgn(p-1) (n)/(2n-1))σ2-[na (1)/(2)(b-|b|)(n 1)](σ-nH2) n(n-1)b2-((n)/(2n-1) 1)n2H4]*1≥0  相似文献   

12.
研究了拟常曲率黎曼流形中的紧致极小子流形问题,给出了Mn是全测地子流形的截面曲率不等式估计,推广了S.T.Yau研究的结果,并导出了有关数量曲率和Ricc曲率的结论  相似文献   

13.
研究欧氏球面中具有平行平均曲率向量的紧致定向子流形 ,获得一个关于Ricci曲率满足处处大于或等于n - 1+(n - 1)H2 +3 n - 2n(n - 1) +2n |H| Sn+ 1-nH2 的条件下子流形的分类定理 .  相似文献   

14.
本文将常曲率流形的子流形的两个定理推广到拟常曲率外围流形的情形,得到了全脐的一个充分条件.  相似文献   

15.
本文研究一般黎曼流形中具有平行平均曲率向量的子流形,得到了关于这类子流形的一个积分不等式及相应的一个余维数减小的定理,推广了S.T.Yau的一个结论.  相似文献   

16.
设Mn是等距嵌入到n+p维球空间Sn+p(1)的n(>2)维紧致子流形,具有平行的非零平均曲率向量且Ricci曲率有正的下界(n-1)c(0相似文献   

17.
对n维空间型中m维可定向闭子流形的平均曲率向量的模长作了估计.在n维空间型中比较了m维定向子流形和n维空间型中m维测地球面的平均曲率向量的模长.在一定意义下描述了空间型中子流形的弯曲程度.  相似文献   

18.
设(Nn 1,g)是n 1维单连通完备的黎曼流形,其黎曼曲率张量取如下形式KABCD=a(gACgBD-gADgBC) b(gACλBλD gBDλAλC-gADλBλC-gBCλAλD), ∑gABλAλB=1,称Nn 1为拟常曲率空间.本文讨论了这类空间中具有常平均曲率的紧致超曲面,给出了关于其第二基本形式模长平方S的积分不等式.  相似文献   

19.
讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了紧致的C-全实子流形的一个刚性结果.  相似文献   

20.
B·Y·Chen在1973年分类了欧氏空间中紧致稳定超曲面。本文考虑“平行正则平均曲率向量”概念,它在超曲面时自然成立。用此概念,我们成功地把B.Y.Chen关于超曲面的上述结果推广到子流形。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号