首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A resolution crystal structure of a beta(1)-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol. The modified turkey (Meleagris gallopavo) receptor was selected to be in its antagonist conformation and its thermostability improved by earlier limited mutagenesis. The ligand-binding pocket comprises 15 side chains from amino acid residues in 4 transmembrane alpha-helices and extracellular loop 2. This loop defines the entrance of the ligand-binding pocket and is stabilized by two disulphide bonds and a sodium ion. Binding of cyanopindolol to the beta(1)-adrenergic receptor and binding of carazolol to the beta(2)-adrenergic receptor involve similar interactions. A short well-defined helix in cytoplasmic loop 2, not observed in either rhodopsin or the beta(2)-adrenergic receptor, directly interacts by means of a tyrosine with the highly conserved DRY motif at the end of helix 3 that is essential for receptor activation.  相似文献   

2.
3.
Semaphorins are axon guidance factors that assist growing axons in finding appropriate targets and forming synapses. Emerging evidence suggests that semaphorins are involved not only in embryonic development but also in immune responses. Semaphorin 7A (Sema7A; also known as CD108), which is a glycosylphosphatidylinositol-anchored semaphorin, promotes axon outgrowth through beta1-integrin receptors and contributes to the formation of the lateral olfactory tract. Although Sema7A has been shown to stimulate human monocytes, its function as a negative regulator of T-cell responses has also been reported. Thus, the precise function of Sema7A in the immune system remains unclear. Here we show that Sema7A, which is expressed on activated T cells, stimulates cytokine production in monocytes and macrophages through alpha1beta1 integrin (also known as very late antigen-1) as a component of the immunological synapse, and is critical for the effector phase of the inflammatory immune response. Sema7A-deficient (Sema7a-/-) mice are defective in cell-mediated immune responses such as contact hypersensitivity and experimental autoimmune encephalomyelitis. Although antigen-specific and cytokine-producing effector T cells can develop and migrate into antigen-challenged sites in Sema7a-/- mice, Sema7a-/- T cells fail to induce contact hypersensitivity even when directly injected into the antigen-challenged sites. Thus, the interaction between Sema7A and alpha1beta1 integrin is crucial at the site of inflammation. These findings not only identify a function of Sema7A as an effector molecule in T-cell-mediated inflammation, but also reveal a mechanism of integrin-mediated immune regulation.  相似文献   

4.
5.
Vasoregulation by the beta1 subunit of the calcium-activated potassium channel   总被引:20,自引:0,他引:20  
Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by local calcium release from the sarcoplasmic reticulum. These 'calcium sparks' activate calcium-dependent potassium (BK) channels comprised of alpha and beta1 subunits. Here we show that targeted deletion of the gene for the beta1 subunit leads to a decrease in the calcium sensitivity of BK channels, a reduction in functional coupling of calcium sparks to BK channel activation, and increases in arterial tone and blood pressure. The beta1 subunit of the BK channel, by tuning the channel's calcium sensitivity, is a key molecular component in translating calcium signals to the central physiological function of vasoregulation.  相似文献   

6.
Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.  相似文献   

7.
HLA class II molecules are a highly polymorphic family of dimeric cell-surface proteins primarily involved in regulating T-cell responses to extrinsic antigens. To define regions of class II molecules involved in T-cell recognition, we have now compared sequences of three HLA DR beta cDNA clones obtained from cells that all express the same serologically defined determinants but differ in terms of T-cell-recognized specificities. The comparisons indicate that very few (one to four) nucleotides differ between what are almost certainly alleles of the DR beta 1 locus. All differences were in the first domain of the molecule and all localized to a region from amino acids 71-86. Because all differences were found only in this region of the molecule, and because DR alpha-chains seem to be relatively non-polymorphic, these positions in the DR beta-chain must have a major role in influencing T-cell recognition of the DR molecule.  相似文献   

8.
9.
K M Neugebauer  L F Reichardt 《Nature》1991,350(6313):68-71
Integrins are a family of alpha beta heterodimeric receptors that mediate cell-cell and cell-substratum interactions. Integrin binding to extracellular ligands regulates cell adhesion, shape, motility, intracellular signalling and gene expression. Mechanisms that regulate integrin function are, therefore, central to the participation of integrins in a diverse set of cellular events. Here we report the identification of TASC, a monoclonal antibody to a novel epitope on the integrin beta 1 subunit, which inhibits cell adhesion to vitronectin but promotes adhesion to laminin and collagen types I and IV. We show that developing retinal neurons that have lost responsiveness to laminin regain the ability to bind laminin in the presence of TASC. Thus, beta 1-class integrins are likely to occupy multiple affinity states that can be modulated at the cell surface.  相似文献   

10.
W A Border  S Okuda  L R Languino  M B Sporn  E Ruoslahti 《Nature》1990,346(6282):371-374
Glomerulonephritis is an inflammation of the kidney characterized by the accumulation of extracellular matrix within the damaged glomeruli, impaired filtration and proteinuria. In its progressive form, the disease destroys kidney function leading to uraemia and death, unless dialysis therapy or kidney transplantation is available. The pathogenesis of glomerulonephritis is incompletely understood, but the eliciting factor is thought often to be an immunological injury to mesangial and/or other resident cells in the glomeruli. We have used an animal model of acute mesangial proliferative glomerulonephritis to show that this disease is associated with increased production and activity of transforming growth factor beta 1 (TGF-beta 1), an inducer of extracellular matrix production. Here we report that administration of anti-TGF-beta 1 at the time of induction of the glomerular disease suppresses the increased production of extracellular matrix and dramatically attenuates histological manifestations of the disease. These results provide direct evidence for a causal role of TGF-beta 1 in the pathogenesis of the experimental disease and suggest a new approach to the therapy of glomerulonephritis.  相似文献   

11.
Human serum beta lipoprotein and beta apoprotein   总被引:1,自引:0,他引:1  
  相似文献   

12.
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimer composed of an alpha and beta chain that is expressed on the surface of most leukocytes and is an essential molecule for adhesion reactions between cells participating in the immune response. A putative ligand for LFA-1 is the intercellular adhesion molecule ICAM-1 (refs 3-5). Leukocyte adhesion abnormality is found in patients with LFA-1 deficiency. It is not clear whether binding of ligand to the LFA-1 molecule merely spatially orientates cells towards each other or can also induce signals that regulate cell activation and differentiation. We have recently developed a T-cell proliferation assay which uses immobilized anti-CD3 monoclonal antibodies as stimulant and is independent of LFA-1-mediated cellular adhesion. As there is no interference by anti-LFA-1 monoclonal antibodies with the adhesion-dependent activation steps, this T-cell activation system allows us to investigate whether transmembrane signals are induced by binding of ligand to LFA-1 on T cells. Our data indicate that binding of ligand to LFA-1 results in the transduction of regulatory signal across the plasma membrane, rather like other molecules (CD2, CD4, CD8) (refs 8-11) with signal-modifying properties involved in the adhesion of T cells to target/stimulator cells. Indeed, adhesion molecules might generally be important in signal transduction, even in cells not belonging to the immune system.  相似文献   

13.
The fast reaction of the actin-based cytoskeleton in motile cells after stimulation with a chemoattractant requires a signal-transduction chain that creates a very specific environment at distinct regions beneath the plasma membrane. Dictyostelium hisactophilin, a unique actin-binding protein, is a submembranous pH sensor that signals slight changes of the H+ concentration to actin by inducing actin polymerization and binding to microfilaments only at pH values below seven. It has a relative molecular mass of 13.5K and its most unusual feature is the presence of 31 histidine residues among its total of 118 amino acids. The transduction of an external signal from the plasma membrane to the cytoskeleton is poorly understood. Here we report the protein's structure in solution determined by nuclear magnetic resonance spectroscopy. The nuclear Overhauser effect intensities of the three-dimensional nuclear Overhauser spectra were used directly in the calculations. The overall folding of histactophilin is similar to that of interleukin-1 beta and fibroblast growth factor, but the primary amino-acid sequence of hisactophilin is unrelated to these two proteins.  相似文献   

14.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule alpha 4 beta 1, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-alpha 4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with alpha 4 beta 1 integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.  相似文献   

15.
16.
Interleukin-1 (IL-1) describes two inflammatory proteins, IL-1 alpha and IL-1 beta, produced by activated macrophages and other cell types and encoded by two genes. Their amino acid sequences have only 26% similarity, but their biological activities are comparable, with a few exceptions; indeed, both molecules appear to act at the same receptor. As IL-1 release prostaglandins which sensitize nociceptors in man and in experimental animals, we tested IL-1 alpha and IL-1 beta in rats for hyperalgesic (nociceptive) activity. Our results show that IL-1 beta given systemically is an extremely potent hyperalgesic agent with a probable peripheral site of action; IL-1 alpha is approximately 3,000 times less active than IL-1 beta. We have delineated the region of IL-1 beta mediating the hyperalgesic effect and developed an analgesic tripeptide analogue of IL-1 beta which antagonizes hyperalgesia evoked by IL-1 beta and by the inflammatory agent carrageenan.  相似文献   

17.
Shiow LR  Rosen DB  Brdicková N  Xu Y  An J  Lanier LL  Cyster JG  Matloubian M 《Nature》2006,440(7083):540-544
Naive lymphocytes continually enter and exit lymphoid organs in a recirculation process that is essential for immune surveillance. During immune responses, the egress process can be shut down transiently. When this occurs locally it increases lymphocyte numbers in the responding lymphoid organ; when it occurs systemically it can lead to immunosuppression as a result of the depletion of recirculating lymphocytes. Several mediators of the innate immune system are known to cause shutdown, including interferon alpha/beta (IFN-alpha/beta) and tumour necrosis factor, but the mechanism has been unclear. Here we show that treatment with the IFN-alpha/beta inducer polyinosine polycytidylic acid (hereafter 'poly(I:C)') inhibited egress by a mechanism that was partly lymphocyte-intrinsic. The transmembrane C-type lectin CD69 was rapidly induced and CD69-/- cells were poorly retained in lymphoid tissues after treatment with poly(I:C) or infection with lymphocytic choriomeningitis virus. Lymphocyte egress requires sphingosine 1-phosphate receptor-1 (S1P1), and IFN-alpha/beta was found to inhibit lymphocyte responsiveness to S1P. By contrast, CD69-/- cells retained S1P1 function after exposure to IFN-alpha/beta. In coexpression experiments, CD69 inhibited S1P1 chemotactic function and led to downmodulation of S1P1. In a reporter assay, S1P1 crosslinking led to co-crosslinking and activation of a CD69-CD3zeta chimaera. CD69 co-immunoprecipitated with S1P1 but not the related receptor, S1P3. These observations indicate that CD69 forms a complex with and negatively regulates S1P1 and that it functions downstream of IFN-alpha/beta, and possibly other activating stimuli, to promote lymphocyte retention in lymphoid organs.  相似文献   

18.
19.
In one southern Italian and one Pakistani patient with homozygous beta0 thalassaemia in which no detectable beta-globin synthesis occurs and no beta-globin messenger RNA is found, the gene for beta globin has been shown to be present using complementary DNA. This demonstrates that for these patients the imbalance in chain synthesis is not attributable to a gene deletion.  相似文献   

20.
Y Shimizu  G A Van Seventer  K J Horgan  S Shaw 《Nature》1990,345(6272):250-253
Regulated adhesion of T cells to extracellular matrix (ECM) proteins is likely to be essential in T cell migration. Constitutive binding of various other cell types to ECM components is mediated by members of the VLA (very late antigen) subfamily of integrins. We describe here the regulated binding of resting CD4+ human T cells to ECM through three VLA integrins: VLA-4 and VLA-5 binding to fibronectin (FN), and a novel pathway of VLA-6 binding to laminin (LN). Binding to ECM is regulated in two ways. First, unlike other VLA-mediated interactions, VLA binding activity of the T cells is rapidly and dramatically augmented with cell activation without change in level of expression of the VLA molecules. Second, binding is regulated with T-cell differentiation; memory T cells express three- to four-fold more VLA-4, VLA-5, and VLA-6 than do naive cells, and bind more efficiently through them to FN and LN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号