首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
丰桂珍  徐璠璠 《江西科学》2020,38(4):466-472
以鄱阳湖原水为研究对象,考察了PAC吸附预处理对超滤膜处理出水的水质、膜通量变化和膜截留性能的影响,并探讨了不同条件下引起膜污染的污染物种类.结果表明,吸附预处理可以提高膜通量,缓解膜污染,处理后的原水中TOC的去除率大约为40%,提高了吸附-超滤组合工艺对有机物的去除效果.当增加吸附预处理,膜通量下降幅度明显减小,相...  相似文献   

2.
魏俊  舒婕  杨清 《科技资讯》2011,(17):136-136
以电镀前处理除油废水的回用为目标,对钛金属微滤膜的性能及污染控制进行了研究。  相似文献   

3.
膜污染是限制膜技术应用的主要因素之一。国内外研究者认为,膜生物反应器中累积的难降解大分子有机物及生物絮体是造成膜污染的主要因素。混凝工艺能有效去除大分子和胶体物质。本文以聚丙烯酰胺(PAM)为混凝剂,研究混凝减轻膜污染的效果。  相似文献   

4.
有机改性凹凸棒土吸附微污染水中苯酚的试验研究   总被引:11,自引:3,他引:11  
研究了用聚二甲基二烯丙基氯化铵(PDMDAAC)改性凹凸棒土对微污染水中苯酚的吸附性能、影响因素及其再生后吸附效果.结果表明:PDMDAAC改性凹凸棒土对微污染水中苯酚具有较强的吸附能力,在pH=6~8、苯酚浓度为10 mg/L、投加量为40 g/L、吸附时间40 min的条件下,吸附去除率达89%;改性后的凹凸棒土可用碱进行再生,再生后对苯酚的吸附能力没有明显下降;改性凹凸棒土的静态吸附行为符合Freundlich吸附等温方程.  相似文献   

5.
膜的污染主要由沉淀、吸附、生物污染造成。笔者对这三种污染形成的原因进行了分析,并且提出了相应的控制方法。  相似文献   

6.
为了解决目前应用较广泛的膜种纳滤膜的膜污染极大地限制了纳滤膜工艺发展的问题,从而在错流过滤条件下更好地预测纳滤膜污染的过程,对减缓纳滤膜污染进行指导,基于逻辑斯谛方程,对纳滤膜通量衰减曲线进行拟合,建立逻辑斯谛纳滤膜污染预测模型;利用所建立模型对不同型号纳滤膜的膜通量衰减曲线进行拟合,考察污染物种类、纳滤膜型号、跨膜压差、错流速率、水力条件等关键因素对纳滤膜通量衰减速率的影响。结果表明:所建立模型通过了显著性检验,实验数据与所建立模型拟合数据的拟合度较高,决定系数R2大于0.95;纳滤膜通量衰减速率越小,则过滤稳定后的纳滤膜通量累积衰减率越大,进而通过调整运行条件和原水质条件等因素,达到调整纳滤膜通量衰减速率,减少纳滤膜污染的目的。  相似文献   

7.
研究使用死端型微滤去除金枪鱼脾脏提取物中悬浮大颗粒过程中的膜污染机理.膜孔堵塞阻力以及膜表面滤饼层阻力.膜孔堵塞是引起膜通量降低的主要污染机理.而膜表面的滤饼层则决定微滤过程的持续时间.改变膜孔径和透膜压力可影响不同膜污染机理间的转化,从而改变了不同污染机理的持续时间.微滤前离心和预过滤去除了金枪鱼脾脏提取物中的部分悬浮颗粒,改变了其中颗粒尺寸分布从而影响了微滤过程中污染机制.观察发现,颗粒尺寸分布是膜污染机制中较重要的因素.  相似文献   

8.
采用微絮凝-金属微滤膜组合工艺处理微污染水,借助X射线能谱、电镜扫描等微观表征以及动态膜污染数学模型等方法,对微絮凝-金属膜组合工艺运行方式与膜污染机理进行研究.试验结果表明组合工艺对微污染水的浑浊度、UV254以及CODMn平均去除效率分别为97.6%、80.0%和63.1%.选用0.3μm金属膜滤芯时,采用恒通量过滤模式,膜比通量随着通量的增加逐渐从44.44L·(m2·h·kPa)-1增至58.33L·(m2·h·kPa)-1;采用恒压过滤模式,膜比通量随着压力的增加逐渐从47.91L·(m2·h·kPa)-1降至17.63L·(m2·h·kPa)-1,金属膜在恒通量运行时的膜比通量高于恒压运行,说明恒通量运行时膜阻力增长较为缓慢.通过X射线能谱分析膜表面污染物中含有O、Al和Si等元素,推断膜表面主要污染物是硅酸铝盐;通过电镜扫描与动态膜污染数学模型模拟的结果表明,金属膜膜污染的主要形式为滤饼层污染.  相似文献   

9.
粉末活性炭-超滤膜处理微污染原水试验研究   总被引:25,自引:0,他引:25  
采用粉末活性炭-超滤膜工艺对微污染原水进行处理.试验主要研究该工艺对有机物的去除效果,粉末炭改善膜通量以及防止膜污染的效果.投加粉末活性炭能有效地提高膜通量,通过反冲洗,膜通量能得到很好的恢复,说明粉末炭能防止膜污染.由于粉末炭去除小分子量的有机物效果良好,因此,该工艺能有效地去除有机物和消毒副产物.  相似文献   

10.
预处理工艺控制膜污染试验及其机理分析   总被引:1,自引:0,他引:1  
探讨了3种不同预处理技术对延缓超滤膜污染的作用.试验表明,前臭氧+在线混凝+超滤(工艺1)、前臭氧+超滤(工艺2)、前臭氧+预氯化+超滤(工艺3)3种工艺超滤膜过滤的临界通量分别为86.5,59.8,68.1L·(m2·h)-1.其中工艺1临界通量最大,且其稳定运行的时间最长(约190h),能够在一定程度上控制膜污染,这主要是因为水中的有机污染物质通过\"矾花\"被吸附到胶体类颗粒物上,通过膜筛分截留,减缓了有机污染物质与膜表面的接触与相互作用.控制、缓解膜污染方面,工艺3效果最好,其原因是在NaClO作用下有机物分子特征改变,一方面降低膜的通量负荷,改变其亲疏水性,另一方面NaClO使得滤饼层的电负性增大,过滤截留物和溶解性有机物较易在水力冲洗中被冲掉,跨膜压差得到很好恢复.通过扫描电镜发现,超滤膜表面附着一层滤饼层,滤饼层较疏松,而膜孔已被污染物堵塞;红外光谱研究发现,超滤膜经过氧化预处理和化学清洗,膜表面的某些基团被氧化,膜表面特性被改变.  相似文献   

11.
试验针对混凝-沉淀-再絮凝-超滤组合工艺对水中有机物的强化去除效果和膜污染的控制效能展开研究.结果表明:再絮凝-超滤组合工艺对有机物的单元去除率可达26%,远高于传统的超滤膜组合工艺;同时,该工艺对有机物的去除主要体现在对中性亲水性有机物和分子量分别大于10kDa和小于1kDa的有机物方面,与传统超滤膜工艺有较大区别.当采用硫酸铝作为再絮凝剂,其投加量达到6.0mg/L时,统一膜污染指数(UMFI)达到最小(0.061 3m2/L),表明再絮凝预处理工艺能够更为有效地控制超滤膜的污染.Zeta电位的测试结果表明:再絮凝过程可使沉后水中残余的胶体Zeta电位降至0,从而减轻了膜表面对污染物的吸附;而再絮凝过程中微小絮体的形成也使得沉后水中颗粒物粒径增大,防止了膜孔堵塞现象的发生并使得形成的滤饼层结构较为松散,从而取得良好的超滤膜污染控制效果.  相似文献   

12.
为了实现纳滤纯化低聚壳聚糖制备液技术的工业化,对纳滤过程中膜污染的形成进行研究,分析了电解质浓度对纳滤膜吸附层污染的影响和纳滤运行中的能量分布情况以及吸附层对电解质截留率的影响。结果发现,膜面吸附层污染与浓差极化存在复杂的交互影响。运行初期传质过程主要受浓差极化控制,低聚壳聚糖在膜面吸附形成的浓流层使浓差极化进一步加剧;随着低聚壳聚糖在膜面累积数量的增大,传质过程逐渐转变为吸附层结构和浓差极化共同控制。膜面吸附层的形成分为浓流层和致密层两个阶段,其中致密层是造成纳滤膜脱盐和操作性能恶化的主要原因,在操作过程中应及时控制和减缓该层的形成。  相似文献   

13.
膜生物反应器膜污染影响因素的分析   总被引:9,自引:2,他引:9  
膜污染问题限制了膜生物反应器(MBR)在污水处理领域的广泛应用,其机理尚未完全清楚,综合分析了近年来关于膜污染机理及模型表征、影响因素的研究成果,通过模拟实验发现胞外聚合物(EPS),溶解性微生物产物(SMP)在膜污染中发挥了重要作用。  相似文献   

14.
选择三种含铁吸附剂FeO_xH_y、Fe_3O_4和MnFe_2O_4,分别预沉积到超滤膜表面的方式,通过对比3种蛋白质引起的膜通量变化;并分析超滤膜表明形态,探究超滤过程中蛋白质对膜污染的作用以及吸附剂对缓解膜污染的效果。试验结果表明:鸡卵白蛋白(ovalbumin,OVA)造成的膜污染最严重;预沉积MnFe_2O_4的对OVA的吸附效果,预沉积Fe_3O_4对OVA的吸附效果较差,对膜污染没有缓解作用。  相似文献   

15.
采用粉末活性炭(PAC)-超滤膜(UF)组合工艺对某城市二级出水进行深度处理,研究了不同PAC投加量下组合工艺的膜渗透性能,并对其膜污染性能进行分析。研究结果发现:在最佳膜通量投加量下(PAC为10 mg/L),膜通量和不可逆膜污染阻力达到最低值;组合工艺对不同分子量的去处效果较直接超滤都有所提高,其中小分子量(3k~10 k Da和3kDa)有机物的去除率提高最大;组合工艺以滤饼层和中间堵塞模型为主,而发生完全堵塞模型的概率相对较小。投加PAC能够有效提高去除效果,降低膜污染。  相似文献   

16.
投加絮凝剂对膜生物反应器影响的试验研究   总被引:1,自引:0,他引:1  
为了提高膜生物反应器的处理效果、减轻膜污染,采用试验研究方法,探讨了投加絮凝剂对污染物去除效果、膜通量衰减的影响以及膜表面特性的变化情况,并探讨了絮凝剂最佳投加量.结果表明:适量投加絮凝剂可有效改善污泥特性,磷的去除率从60%提高到85%,减缓膜通量衰减,小时膜通量衰减从原来的65.1%升至78.6%,说明投加絮凝剂是一种防治膜污染的有效手段.  相似文献   

17.
以引黄水库水为水源,基于超滤组合工艺中试装置,考察KMnO4预氧化对有机物转化和超滤膜污染的影响。研究结果表明:原水以相对分子质量大于3×103的有机物为主,亲疏水性有机物比例相当。混凝沉淀主要去除疏水性与相对分子质量大于1×105的有机物,去除率分别为13.50%和47.06%。随投加量的升高,KMnO4对相对分子质量大于1×105的有机物去除率增加,同时产生了较多相对分子质量为3×103~1×105的有机物;水中疏水性有机物随之由降低变为升高。当KMnO4投加量适量时,可以减少膜污染,当投加量过高时,则会增加膜的不可逆污染。超滤膜去除的主要是疏水性有机物,相对分子质量大于1×105和1×104~1×105的有机物分别是造成膜可逆与不可逆污染的主要因素。超滤反洗废液中主要为相对分子质量大的疏水性有机物,化学清洗废液中的Mn含量随KMnO4投加量升高而增大。  相似文献   

18.
采用膜蒸馏技术浓缩中药提取液,在进料侧间歇鼓泡产生两相流。重点考察了气速、通气持续时间、通气频率对膜污染的抑制效果。结果表明间隔时间为30min时, 气速分别为0.06和0.09m3/h时抑制膜污染的效果明显不如气速分别为0.12和0.15m3/h时的效果。通气时间间隔为30min,实验进行到250min时,通气持续时间为3和2min的通量分别为22.0和15.0kg/(m2·h),前者抑制膜污染的效果明显好于后者。通气频率越高,则两相流抑制膜污染的效果越好。通过两相流技术,可以使跨膜通量在实验进行250min后仅下降5%。  相似文献   

19.
Natural organic matter (NOM) and particles in source water are responsible for the majority of ultrafiltration (UF) membrane fouling that occurs during drinking water treatment. This study was conducted to (1) understand the UF membrane fouling phenomena caused by NOM and turbidity-causing particles and (2) investigate the effect of coagulation pretreatment on the alleviation of membrane fouling. In this study, kaolinite and humic acid (HA) were used to simulate the particles and NOM present in source water. The results revealed that the particles contributed to reversible fouling due to cake layer formation on the membrane surface, but that could be effectively reduced by increasing the frequency of physical backwashing. The results of the molecular weight (MW) distribution measurements, resin fractionation, SEM and FTIR analyses showed that HA primarily contributed to irreversible fouling. Taken together, the results of this study imply that the particles and NOM compounds present in source water may have different fouling behavior, and that particles may mitigate the irreversible fouling caused by HA. The addition of coagulant can lead to a higher rate of removal of large-sized hydrophobic compounds. Coagulation pretreatment can improve membrane performance and postpone membrane fouling development effectively, as well as retard the implementation of membrane chemical cleaning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号