首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two defining functional features of ion channels are ion selectivity and channel gating. Ion selectivity is generally considered an immutable property of the open channel structure, whereas gating involves transitions between open and closed channel states, typically without changes in ion selectivity. In store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, the molecular mechanism of channel gating by the CRAC channel activator, stromal interaction molecule 1 (STIM1), remains unknown. CRAC channels are distinguished by a very high Ca(2+) selectivity and are instrumental in generating sustained intracellular calcium concentration elevations that are necessary for gene expression and effector function in many eukaryotic cells. Here we probe the central features of the STIM1 gating mechanism in the human CRAC channel protein, ORAI1, and identify V102, a residue located in the extracellular region of the pore, as a candidate for the channel gate. Mutations at V102 produce constitutively active CRAC channels that are open even in the absence of STIM1. Unexpectedly, although STIM1-free V102 mutant channels are not Ca(2+)-selective, their Ca(2+) selectivity is dose-dependently boosted by interactions with STIM1. Similar enhancement of Ca(2+) selectivity is also seen in wild-type ORAI1 channels by increasing the number of STIM1 activation domains that are directly tethered to ORAI1 channels, or by increasing the relative expression of full-length STIM1. Thus, exquisite Ca(2+) selectivity is not an intrinsic property of CRAC channels but rather a tuneable feature that is bestowed on otherwise non-selective ORAI1 channels by STIM1. Our results demonstrate that STIM1-mediated gating of CRAC channels occurs through an unusual mechanism in which permeation and gating are closely coupled.  相似文献   

2.
3.
将位于内质网内的STIMI的N端片段,包括EF手性区域和SAM结构域,分别标记上N端和C端6*His标签,在大肠杆菌中重组表达,经过亲和层析和凝胶过滤层析的纯化,得到了大量、纯净的重组STIMIN端蛋白,通过悬滴气相扩散法得到了一些三维梭状晶体.  相似文献   

4.
Orai1 is an essential pore subunit of the CRAC channel   总被引:1,自引:0,他引:1  
Prakriya M  Feske S  Gwack Y  Srikanth S  Rao A  Hogan PG 《Nature》2006,443(7108):230-233
Stimulation of immune cells causes depletion of Ca2+ from endoplasmic reticulum (ER) stores, thereby triggering sustained Ca2+ entry through store-operated Ca2+ release-activated Ca2+ (CRAC) channels, an essential signal for lymphocyte activation and proliferation. Recent evidence indicates that activation of CRAC current is initiated by STIM proteins, which sense ER Ca2+ levels through an EF-hand located in the ER lumen and relocalize upon store depletion into puncta closely associated with the plasma membrane. We and others recently identified Drosophila Orai and human Orai1 (also called TMEM142A) as critical components of store-operated Ca2+ entry downstream of STIM. Combined overexpression of Orai and Stim in Drosophila cells, or Orai1 and STIM1 in mammalian cells, leads to a marked increase in CRAC current. However, these experiments did not establish whether Orai is an essential intracellular link between STIM and the CRAC channel, an accessory protein in the plasma membrane, or an actual pore subunit. Here we show that Orai1 is a plasma membrane protein, and that CRAC channel function is sensitive to mutation of two conserved acidic residues in the transmembrane segments. E106D and E190Q substitutions in transmembrane helices 1 and 3, respectively, diminish Ca2+ influx, increase current carried by monovalent cations, and render the channel permeable to Cs+. These changes in ion selectivity provide strong evidence that Orai1 is a pore subunit of the CRAC channel.  相似文献   

5.
6.
As the sole Ca2+ entry mechanism in a variety of non-excitable cells, store-operated calcium (SOC) influx is important in Ca2+ signalling and many other cellular processes. A calcium-release-activated calcium (CRAC) channel in T lymphocytes is the best-characterized SOC influx channel and is essential to the immune response, sustained activity of CRAC channels being required for gene expression and proliferation. The molecular identity and the gating mechanism of SOC and CRAC channels have remained elusive. Previously we identified Stim and the mammalian homologue STIM1 as essential components of CRAC channel activation in Drosophila S2 cells and human T lymphocytes. Here we show that the expression of EF-hand mutants of Stim or STIM1 activates CRAC channels constitutively without changing Ca2+ store content. By immunofluorescence, EM localization and surface biotinylation we show that STIM1 migrates from endoplasmic-reticulum-like sites to the plasma membrane upon depletion of the Ca2+ store. We propose that STIM1 functions as the missing link between Ca2+ store depletion and SOC influx, serving as a Ca2+ sensor that translocates upon store depletion to the plasma membrane to activate CRAC channels.  相似文献   

7.
Davidson G  Wu W  Shen J  Bilic J  Fenger U  Stannek P  Glinka A  Niehrs C 《Nature》2005,438(7069):867-872
Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.  相似文献   

8.
Penna A  Demuro A  Yeromin AV  Zhang SL  Safrina O  Parker I  Cahalan MD 《Nature》2008,456(7218):116-120
Ca(2+)-release-activated Ca(2+) (CRAC) channels underlie sustained Ca(2+) signalling in lymphocytes and numerous other cells after Ca(2+) liberation from the endoplasmic reticulum (ER). RNA interference screening approaches identified two proteins, Stim and Orai, that together form the molecular basis for CRAC channel activity. Stim senses depletion of the ER Ca(2+) store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane, and Orai embodies the pore of the plasma membrane calcium channel. A close interaction between Stim and Orai, identified by co-immunoprecipitation and by F?rster resonance energy transfer, is involved in the opening of the Ca(2+) channel formed by Orai subunits. Most ion channels are multimers of pore-forming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the plasma membrane. Here we show, by biochemical analysis after cross-linking in cell lysates and intact cells and by using non-denaturing gel electrophoresis without cross-linking, that Orai is predominantly a dimer in the plasma membrane under resting conditions. Moreover, single-molecule imaging of green fluorescent protein (GFP)-tagged Orai expressed in Xenopus oocytes showed predominantly two-step photobleaching, again consistent with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the carboxy terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca(2+) store depletion or clustering of Orai into punctae yielded mostly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C terminus of Stim thus induces Orai dimers to dimerize, forming tetramers that constitute the Ca(2+)-selective pore. This represents a new mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.  相似文献   

9.
Yue L  Peng JB  Hediger MA  Clapham DE 《Nature》2001,410(6829):705-709
The calcium-release-activated Ca2+channel, ICRAC, is a highly Ca2+-selective ion channel that is activated on depletion of either intracellular Ca2+ levels or intracellular Ca2+ stores. The unique gating of ICRAC has made it a favourite target of investigation for new signal transduction mechanisms; however, without molecular identification of the channel protein, such studies have been inconclusive. Here we show that the protein CaT1 (ref. 4), which has six membrane-spanning domains, exhibits the unique biophysical properties of ICRAC when expressed in mammalian cells. Like ICRAC, expressed CaT1 protein is Ca2+ selective, activated by a reduction in intracellular Ca2+ concentration, and inactivated by higher intracellular concentrations of Ca2+. The channel is indistinguishable from ICRAC in the following features: sequence of selectivity to divalent cations; an anomalous mole fraction effect; whole-cell current kinetics; block by lanthanum; loss of selectivity in the absence of divalent cations; and single-channel conductance to Na+ in divalent-ion-free conditions. CaT1 is activated by both passive and active depletion of calcium stores. We propose that CaT1 comprises all or part of the ICRAC pore.  相似文献   

10.
T Tanabe  B A Adams  S Numa  K G Beam 《Nature》1991,352(6338):800-803
Membrane depolarization causes many kinds of ion channels to open, a process termed activation. For both Na+ channels and Ca2+ channels, kinetic analysis of current has suggested that during activation the channel undergoes several conformational changes before reaching the open state. Structurally, these channels share a common motif: the central element is a large polypeptide with four repeating units of homology (repeats I-IV), each containing a voltage-sensing region, the S4 segment. This suggests that the distinct conformational transitions inferred from kinetic analysis may be equated with conformational changes of the individual structural repeats. To investigate the molecular basis of channel activation, we constructed complementary DNAs encoding chimaeric Ca2+ channels in which one or more of the four repeats of the skeletal muscle dihydropyridine receptor are replaced by the corresponding repeats derived from the cardiac dihydropyridine receptor. We report here that repeat I determines whether the chimaeric Ca2+ channel shows slow (skeletal muscle-like) or rapid (cardiac-like) activation.  相似文献   

11.
Yeromin AV  Zhang SL  Jiang W  Yu Y  Safrina O  Cahalan MD 《Nature》2006,443(7108):226-229
Recent RNA interference screens have identified several proteins that are essential for store-operated Ca2+ influx and Ca2+ release-activated Ca2+ (CRAC) channel activity in Drosophila and in mammals, including the transmembrane proteins Stim (stromal interaction molecule) and Orai. Stim probably functions as a sensor of luminal Ca2+ content and triggers activation of CRAC channels in the surface membrane after Ca2+ store depletion. Among three human homologues of Orai (also known as olf186-F), ORAI1 on chromosome 12 was found to be mutated in patients with severe combined immunodeficiency disease, and expression of wild-type Orai1 restored Ca2+ influx and CRAC channel activity in patient T cells. The overexpression of Stim and Orai together markedly increases CRAC current. However, it is not yet clear whether Stim or Orai actually forms the CRAC channel, or whether their expression simply limits CRAC channel activity mediated by a different channel-forming subunit. Here we show that interaction between wild-type Stim and Orai, assessed by co-immunoprecipitation, is greatly enhanced after treatment with thapsigargin to induce Ca2+ store depletion. By site-directed mutagenesis, we show that a point mutation from glutamate to aspartate at position 180 in the conserved S1-S2 loop of Orai transforms the ion selectivity properties of CRAC current from being Ca2+-selective with inward rectification to being selective for monovalent cations and outwardly rectifying. A charge-neutralizing mutation at the same position (glutamate to alanine) acts as a dominant-negative non-conducting subunit. Other charge-neutralizing mutants in the same loop express large inwardly rectifying CRAC current, and two of these exhibit reduced sensitivity to the channel blocker Gd3+. These results indicate that Orai itself forms the Ca2+-selectivity filter of the CRAC channel.  相似文献   

12.
G Varadi  P Lory  D Schultz  M Varadi  A Schwartz 《Nature》1991,352(6331):159-162
The L-type voltage-dependent calcium channel is an important link in excitation-contraction coupling of muscle cells (reviewed in refs 2 and 3). The channel has two functional characteristics: calcium permeation and receptor sites for calcium antagonists. In skeletal muscle the channel is a complex of five subunits, alpha 1, alpha 2, beta, gamma and delta. Complementary DNAs to these subunits have been cloned and their amino-acid sequences deduced. The skeletal muscle alpha 1 subunit cDNA expressed in L cells manifests as specific calcium-ion permeation, as well as sensitivity to the three classes of organic calcium-channel blockers. We report here that coexpression of the alpha 1 subunit with other subunits results in significant changes in dihydropyridine binding and gating properties. The available number of drug receptor sites increases 10-fold with an alpha 1 beta combination, whereas the affinity of the dihydropyridine binding site remains unchanged. Also, the presence of the beta subunit accelerates activation and inactivation kinetics of the calcium-channel current.  相似文献   

13.
Gamma-aminobutyric acid (GABA)B receptors couple to Go to inhibit N-type calcium channels in embryonic chick dorsal root ganglion neurons. The voltage-independent inhibition, mediated by means of a tyrosine-kinase pathway, is transient and lasts up to 100 seconds. Inhibition of endogenous RGS12, a member of the family of regulators of G-protein signalling, selectively alters the time course of voltage-independent inhibition. The RGS12 protein, in addition to the RGS domain, contains PDZ and PTB domains. Fusion proteins containing the PTB domain of RGS12 alter the rate of termination of the GABA(B) signal, whereas the PDZ or RGS domains of RGS 12 have no observable effects. Using primary dorsal root ganglion neurons in culture, here we show an endogenous agonist-induced tyrosine-kinase-dependent complex of RGS12 and the calcium channel. These results indicate that RGS12 is a multifunctional protein capable of direct interactions through its PTB domain with the tyrosine-phosphorylated calcium channel. Recruitment of RGS proteins to G-protein effectors may represent an additional mechanism for signal termination in G-protein-coupled pathways.  相似文献   

14.
Delgado P  Fernández E  Dave V  Kappes D  Alarcón B 《Nature》2000,406(6794):426-430
Thymocytes from mice lacking the CD3delta chain of the T-cell receptor (TCR), unlike those of other CD3-deficient mice, progress from a CD4- CD8- double-negative to a CD4+ CD8+ double-positive stage. However, CD3delta-/- double-positive cells fail to undergo positive selection, by which double-positive cells differentiate into more mature thymocytes. Positive selection is also impaired in mice expressing inactive components of the Ras/mitogen activated protein (MAP) kinase signalling pathway. Here we show that CD3delta-/- thymocytes are defective in the induction of extracellular signal-regulated protein kinase (ERK) MAP kinases upon TCR engagement, whereas activation of other MAP kinases is unaffected. The requirement for CD3delta maps to its extracellular or transmembrane domains, or both, as expression of a tail-less CD3delta rescues both ERK activation and positive selection in CD3delta-/- mice. Furthermore, the defect correlates with severely impaired tyrosine phosphorylation of the linker protein LAT, and of the CD3zeta chain that is localized to membrane lipid rafts upon TCR engagement. Our data indicate that the blockade of positive selection of CD3delta-/- thymocytes may derive from defective tyrosine phosphorylation of CD3zeta in lipid rafts, resulting in impaired activation of the LAT/Ras/ERK pathway.  相似文献   

15.
M C Nowycky  A P Fox  R W Tsien 《Nature》1985,316(6027):440-443
How many types of calcium channels exist in neurones? This question is fundamental to understanding how calcium entry contributes to diverse neuronal functions such as transmitter release, neurite extension, spike initiation and rhythmic firing. There is considerable evidence for the presence of more than one type of Ca conductance in neurones and other cells. However, little is known about single-channel properties of diverse neuronal Ca channels, or their responsiveness to dihydropyridines, compounds widely used as labels in Ca channel purification. Here we report evidence for the coexistence of three types of Ca channel in sensory neurones of the chick dorsal root ganglion. In addition to a large conductance channel that contributes long-lasting current at strong depolarizations (L), and a relatively tiny conductance that underlies a transient current activated at weak depolarizations (T), we find a third type of unitary activity (N) that is neither T nor L. N-type Ca channels require strongly negative potentials for complete removal of inactivation (unlike L) and strong depolarizations for activation (unlike T). The dihydropyridine Ca agonist Bay K 8644 strongly increases the opening probability of L-, but not T- or N-type channels.  相似文献   

16.
Polycystin-L is a calcium-regulated cation channel permeable to calcium ions.   总被引:17,自引:0,他引:17  
Polycystic kidney diseases are genetic disorders in which the renal parenchyma is progressively replaced by fluid-filled cysts. Two members of the polycystin family (polycystin-1 and -2) are mutated in autosomal dominant polycystic kidney disease (ADPKD), and polycystin-L is deleted in mice with renal and retinal defects. Polycystins are membrane proteins that share significant sequence homology, especially polycystin-2 and -L (50% identity and 71% similarity). The functions of the polycystins remain unknown. Here we show that polycystin-L is a calcium-modulated nonselective cation channel that is permeable to sodium, potassium and calcium ions. Patch-clamp experiments revealed single-channel activity with a unitary conductance of 137 pS. Channel activity was substantially increased when either the extracellular or intracellular calcium-ion concentration was raised, indicating that polycystin-L may act as a transducer of calcium-mediated signalling in vivo. Its large single-channel conductance and regulation by calcium ions distinguish it from other structurally related cation channels.  相似文献   

17.
R H Scott  A C Dolphin 《Nature》1987,330(6150):760-762
The activation of a guanine nucleotide binding (G) protein is an essential step in coupling certain receptors to the inhibition of voltage-activated calcium channels. We have previously observed that analogues of GTP potentiate the effect of receptor agonists and inhibit calcium currents in cultured dorsal root ganglion (DRG) neurones. A residual sustained 'L-type' component of the calcium channel current is resistant to inhibition by internal guanosine 5'-O-3-thiotriphosphate (GTP-gamma-S). Because calcium channel antagonists such as D600, nifedipine and diltiazem inhibit L currents, we examined their effect on GTP-gamma-S-modified currents. These compounds all produced a rapid and very marked potentiation of calcium channel currents in the presence of internal GTP-gamma-S and this effect was prevented by pertussis toxin which ADP ribosylates the G proteins Gi/Go (for review see ref. 10). We suggest that this potentiation indicates that activated G protein can interact with the calcium channel, and that this enhances the action of calcium channel ligands at their agonist sites on the channel in its resting state. These results represent the first electrophysiological evidence that guanine nucleotides are able to influence cellular responses to calcium channel ligands.  相似文献   

18.
Lewis RS 《Nature》2007,446(7133):284-287
Store-operated calcium channels (SOCs) serve essential functions from secretion and motility to gene expression and cell growth. A fundamental mystery is how the depletion of Ca2+ from the endoplasmic reticulum (ER) activates Ca2+ entry through SOCs in the plasma membrane. Recent studies using genetic approaches have identified genes encoding the ER Ca2+ sensor and a prototypic SOC, the Ca2+-release-activated Ca2+ (CRAC) channel. New findings reveal a unique mechanism for channel activation, in which the CRAC channel and its sensor migrate independently to closely apposed sites of interaction in the ER and the plasma membrane.  相似文献   

19.
Properties of a calcium channel in snail neurones   总被引:6,自引:0,他引:6  
N B Standen 《Nature》1974,250(464):340-342
  相似文献   

20.
Plants gradually develop their ability to tolerate environmental water deficit as part of the evolutionary process.Abscisic acid(ABA) plays a critical role during drought and osmotic stress.Several histidine protein kinases are regarded as osmotic sensors or regulators in the adaptive response of plants to water deficit.In this study,we report that ATHK1,which was previously shown to function as an osmotic regulator,is involved in ABA-induced stomatal signaling in Arabidopsis.Mutants null for ATHK1 expression were unable to transmit normal ABA responses in guard cells,including inducing stomatal closure,producing hydrogen peroxide and activating calcium influx.Moreover,patch clamp and confocal analysis demonstrated that ATHK1 may function downstream of hydrogen peroxide in ABA-induced stomatal closure,by regulating calcium channel activity and calcium oscillation in Arabidopsis guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号